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S1. Recent studies on the ML prediction of H2 adsorption on COFs 

Table S1. Recent studies on the ML prediction of H2 adsorption on COFs 

Year Publication ML model Features Target 

2019 J. Phys. 

Chem. C1 

Artificial Neural 

Network (ANN) 

Structural properties, 

alchemical site number 

density, epsilon of H2-

alchemical sites, T and 

P conditions 

H2 loadings at 

various T and P 

2020 J. Phys. 

Chem. C2 

Ensemble Learning 

with Artificial Neural 

Networks (ANNs) 

Canonical partition 

functions 

Partition function 

of adsorbed fluids, 

then predict H2 

isotherm in COF-

102 

2023 J. Mater. 

Chem. A3 

Tree-based Regressors Structural and chemical 

properties 

Adsorption and 

separation 

performance 

metrics for 

CH4/H2 mixtures 
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S2. Metrics used in this work 

Coefficient of determination (R2), mean absolute error (MAE), root-mean squared error 

(RMSE) was served as metrics in the optimization process of global optimization and machine 

learning models training. The definition of each metric can be represented as: 
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S3. Version of Python packages used in this work 

Table S2. Version information of the Python packages used in this work  

Package Version 

ase 3.22.1 

mofun 1.0 

numpy 1.26.4 

pandas 2.2.1 

pymatgen 2024.3.1 

scikit-learn 1.5.2 

scikit-optimize 0.10.2 

scipy 1.10.1 

shap 0.45.1 

torch 2.2.2 

xgboost 2.1.1 
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S4. Electronic structure calculations and force field parameterization 

 In this work, the interaction energies between H2 and the Mg-alkoxide group were 

calculated at the MP2/6-311+G** level of theory with counterpoise corrections. These energies 

were estimated by subtracting the sum of the energies of each fragment from the counterpoise-

corrected energy of the whole system, referred to as the "complexation energy (corrected)" in 

the Gaussian output file. For the MP2 calculation, default convergence criteria in Gaussian 16 

Rev. C.01 software were used. 

To simulate the scenario where one H2
 molecule approaching the Mg site from different 

directions and distances, six types of H2-catecholate configurations were constructed, 

corresponding to the schematics shown in Figure 2(b). The difference between type 1 and type 

2 lies in the orientation of the hydrogen atoms relative to the phenyl ring. In type 1, both 

hydrogen atoms lie on the same plane as the phenyl ring. In type 2, however, the two hydrogen 

atoms are aligned along a bond that is perpendicular to the plane of the phenyl ring. This 

distinction is subtle but important in understanding the structural variation.   

The geometry optimization results showed that the H2 molecule did not dissociate into two 

hydrogen atoms, which would indicate chemisorption. The H-H bond length remained 

approximately 0.75 Å (75 pm), and the optimal distance between the H2 center of mass and the 

Mg atom was around 2.2 Å, with a binding energy of approximately 20 kJ/mol. These findings 

confirm that the H2 molecules are physiosorbed on the Mg sites, similar to other works in the 

field. For example, studies by Tsivion et al.4, Veccham et al.5, and Chakraborty et al.6 
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demonstrated that H2 physisorption on metal-functionalized frameworks primarily involves 

weak van der Waals (vdW) interactions and polarization effects, without significant charge 

transfer or bond formation, which would indicate chemisorption.  

To address the scenario where two H2 molecules bind to both sites of a two-site 

functionalized structure, we also con-structed configurations with two H2 molecules. These 

molecules were initially placed either on the same side or opposite sides of the catecholate. 

Followed by MP2 geometry optimization, binding energies were calculated using the same 

level of single-point calculations with counterpoise corrections. Figure S1 shows the optimized 

configurations and corresponding average binding energies (overall binding energy divided by 

the number of H2 molecules). 

In the case (a) where only one H2 molecule binds to one site of the functionalized 

catecholate, the binding energies for single-site and two-site functionalized catecholates are 

−21.59 kJ/mol and −19.70 kJ/mol, respectively. In case (b), where two H2 molecules bind to 

the same site, the binding energies are −20.39 kJ/mol for the single-site and −18.06 kJ/mol for 

the two-site functionalized catecholates. In case (c), where two H2 molecules bind to each site 

of the two-site functionalized catecholate, the average binding energy is −19.72 kJ/mol, which 

is 0.02 kJ/mol lower than one H2 molecule adsorption on two-site functionalized catecholate. 

However, there is an appreciable difference in the binding energies when one H2 molecule is 

adsorbed vs two H2 molecule adsorbed on Mg sites (~1.5 kJ/mol). This difference in ad-

sorption energy could lead to lower overall uptake for H2. Unfortunately, we did not consider 
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the many-body affect in current work but future work should consider the impact of co-

adsorbed H2 as part of the force field development. 

After calculating the interaction energies, the results were fitted to the force field (FF) 

models, as shown in Schematics S1 to S3, using the global optimization algorithm of dual 

annealing. This stochastic approach derived from the work by Xiang et al.7 combines the 

generalization of Classical Simulated Annealing (CSA)8 and Fast Simulated Annealing (FSA)9 

coupled to a strategy for applying a local search on accepted locations.10 

During the FF fitting process, we considered only the Coulomb interactions between the 

H2 adsorbates and the Mg, C, and O atoms in the Mg-alkoxide groups, assigning partial atomic 

charges only to these atoms and neglecting the others in the framework. To validate this 

assumption, we constructed single- and two-site functionalized moieties with three phenyl 

rings and performed MP2-level geometry optimizations and Natural Bond Orbital (NBO) 

analysis to obtain partial charge information. As shown in Figure S2, the partial charges on 

the Mg and O atoms in the functional groups are significantly larger than those on the other 

atoms. This supports the conclusion that concentrating the charge density primarily on the Mg-

alkoxide groups for the functionalized structures is both reasonable and consistent with the 

available data. 

Detailed parameters and settings can be found in Tables S3 to S6. Detailed results of the 

FF fitting are shown in Figure S3 to S5. 
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Schematic S1. Schematic of parameterization of the Modified-Morse force field model. Two 

different force field, namely FF1 and FF2, were obtained from the H2 binding energies of 

single-site and two-site functionalized catecholates, respectively. 
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Schematic S2. Schematic of different potential models used for describing interatomic 

interactions (electrostatic interactions not included) between different atoms pairs. Modified-

Morse potential was used to describe the interatomic interactions between H2 and the atoms in 

the functional group, while the interatomic interactions between H2 and other atoms were 

described by LJ potential model.  
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Schematic S3. Schematic of finding the optimal sets of parameters by attempting to minimize 

the root-mean-square deviation (RMSE) between the interaction energies calculated from MP2 

and FF models using global optimization method, in this work, dual annealing. 
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Table S3. Partial charges of the atoms of H2 adsorbates and Mg-alkoxide functional groups 

Atom q 

H_h2 0.468 

H_com −0.936 

Mg_cat 1.25 

O_cat −0.625 

C_cat 0.0 

 

Table S4. Lennard-Jones force field parameters of framework atoms (outside the Mg-alkoxide 

functional sites) used in this work. 

Atom Type ε/kb (K) σ (Å) 

B 47.81 3.58 

Br 126.29 3.73 

C 47.86 3.47 

Cl 142.56 3.52 

Co 7.04 2.56 

Cu 2.52 3.11 

F 36.48 3.09 

H 7.65 2.85 

N 38.95 3.26 

Ni 7.55 2.52 

O 48.16 3.03 

S 173.11 3.59 

Si 156 3.8 

V 8.05 2.8 

Zn 27.68 4.04 

 

Table S5. Lennard-Jones force field parameters of the H2 adsorbate atoms used in this work. 

Atom Type ε/kb (K) σ (Å) 

H_h2 0.0 0.0 

H_com 36.7 2.958 
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Table S6. Settings for dual annealing fitting 

Setting Parameter 

Objective function 𝑅𝑀𝑆𝐸(𝐸𝑛𝑒𝑟𝑔𝑦𝑖𝑛𝑡𝑒𝑟,𝑀𝑃2 , 𝐸𝑛𝑒𝑟𝑔𝑦𝑖𝑛𝑡𝑒𝑟,𝐹𝐹) 

Bounds D∈[1.0,1000.0], α∈[0.01,5.0], r*∈[0.1,10.0] 

Maximum iteration 1000 

Other parameters Default values in scipy.optimize.dual_annealing 
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Figure S1. Average H2 binding energies of different H2-catecholate configurations. 
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Figure S2. Partial atomic charges obtained from NBO analysis of the Mg-alkoxide 

functionalized moieties with three phenyl rings. 
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Figure S3. Detailed results of the FF fitting results. H2 interaction energies calculated with the 

FF models (lines) compared with energies calculated by MP2 (circles). The RMSE values for 

each type of configuration and different FF models are shown in the legend. 
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Figure S4. Sensitivity analysis of the FF1 parameters. The color refers to the RMSE values 

between the binding energies calculated by the current set of parameters and those from MP2 

calculations. The red stars represent the local minimum point and the blue squares represent 

the resulting optimal sets of parameters from global optimization.  
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Figure S5. Sensitivity analysis of the FF2 parameters. The color refers to the RMSE values 

between the binding energies calculated by the current set of parameters and those from MP2 

calculations. The red stars represent the local minimum point and the blue squares represent 

the resulting optimal sets of parameters from global optimization. 
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S5. Molecular models construction 

To implement the different types of functionalization with Mg-alkoxide groups, python 

package MOFUN and Julia package PoreMatMod were used for the definition of moieties, 

searching for replace sites, and replacement of the original queries with functionalized ones. 

Although the specific functions implementing these steps are different for these two packages, 

the workflows are the same. In the current workflow to generate functionalized COF structures, 

we used MOFUN program to detect and place alkoxide functional groups. For MOFUN, the 

process involved the following steps: first, the original and functionalized phenyl ring moieties 

for search and re-placement were loaded using the Atoms.load function. Next, the 

find_pattern_in_structure function was employed to identify all potential sites for 

functionalization, i.e., phenyl rings, within the structure. Finally, the re-

place_pattern_in_structure function was used to replace the original phenyl rings with one- or 

two-site Mg-alkoxide functionalized ones, based on a defined replacement ratio (e.g., 50% or 

100%). A tolerance value can be set to avoid the atomic overlapping after the replacement.  

After modification, the Mg, O, and C atoms in the functional groups of the framework 

structures were labelled specifically to make sure the specific FF models are implement on 

these atoms. We implemented specialized force field models by modifying the CIF files with 

labeling the O and C atoms in the Mg-alkoxide groups as Te and Sn, respectively. For instance, 

in the CIF file, we changed the _atom_site_label from O12 to Te12 (or C13 to Sn13), while 

keeping the _atom_site_type_symbol unchanged as O (or C). In the RASPA2 input definition 
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files, we defined the force field parameters for these pseudo-atoms ("Te" and "Sn") using the 

Morse potential parameters for O_cat and C_cat atoms (_cat stands for the atoms in Mg-

alkoxide group, as labeled in Table 1 in the manuscript), along with the corresponding mass 

and partial charge information. 

There is no overall geometry optimization on the structures after the modification. The 

geometries of the single- and two-site functionalized phenyl rings used as the replacement 

moieties were from the MP2-optimized functionalized catecholate. The local structure around 

the functional groups can be considered as realistic after their integration into the larger COF 

structures, even without further overall geometry optimization. 

To further investigate the importance of overall geometry optimization, we conducted 

rough geometry optimizations on two representative structures with 100% two-site 

functionalization: 21320N2 and 07010N3. These structures represent two typical classes of 

COFs -- one with larger pores and fewer functionalization sites, and another with smaller pores 

and more functional sites. The 100% two-site functionalization introduces the highest density 

of Mg-alkoxide sites, potentially leading to the most significant changes post-optimization. 

We conducted geometry optimizations using DFT+D3 (PBE) with VASP 6.4.2, which 

converged after approximately 80 optimization steps. We observed that the Mg atoms moved 

away from the O atoms, and the alkoxide site functional group becomes distorted. The 

visualizations of an example structure, the 100% two-site functionalized structure 

07010N3_two_all, before/after overall geometry optimization are shown in Figure S6. 
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We proceeded to compare the H2 adsorption performance of the structures before/after 

DFT optimization using GCMC simulations under the same conditions as described in the 

manuscript. The H2 adsorption isotherms with/without overall geometry optimization (DFT) 

are shown in Figure S7. The results demonstrated that the discrepancies in H2 uptake between 

the optimized and non-optimized structures are minimal, with the absolute errors falling within 

an acceptable range.  

In conclusion, for high-throughput screening in this work, the overall geometry 

optimization may not be necessary, as it adds considerable computational cost without 

significantly improving the accuracy of the adsorption predictions. For materials identified as 

top performers during the screening, we recommend conducting geometry optimization to 

obtain more precise adsorption performance data. Additionally, to prevent the distortion of Mg-

alkoxide sites during optimization, adding water solvent molecules may stabilize the structure. 

However, this is beyond the scope of the current study and could be explored in future work.
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Figure S6. Visualization of the 100% two-site functionalized structure 07010N3_two_all: 

without overall optimization, and after optimization with VASP. The upper figures display the 

overall structures, while the lower figures highlight the moieties with Mg-alkoxide groups. 
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Figure S7. Comparison between the H2 isotherms of the 100% two-site functionalized (a) 

21320N2 and (b) 07010N3 with/without overall geometry optimization by DFT. 

  

a b 
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S6. High-throughput GCMC simulations of original and functionalized structures with 

specific FF models 

Table S7 shows the DOE Technical Targets for Onboard Hydrogen Storage for Light-

Duty Vehicles from the Hydrogen and Fuel Cell Technologies Office, used as our target of 

high-throughput screening. 

Figure S8 shows the detail of the H2 uptakes at different pressure points, corresponding to 

discussion in Section 3.2.1 and Figure 3 in the main text.  

Figure S9 shows the enhancement of the gravimetric and volumetric H2 DCs after 

different types and ratios of functionalization, compared to the density of the original 

(unfunctionalized) structures.   

To investigate the impact of framework charges on H2 adsorption performance in original 

and functionalized structures, we performed GCMC simulations on the structures with and 

without partial atomic charges on the framework atoms. For the original unfunctionalized 

structure, the partial atomic charges information was estimated by DDEC6 and provided by the 

CURATED-COF database. For the Mg-alkoxide functionalized structures, we first predicted 

the charges of all framework atoms using the ML-based partial atomic charge estimation 

method PACMAN11, then after fixing the atomic charges of Mg_cat, O_cat, and C_cat atoms 

at the functional sites as 1.250, -0.625, and 0.000, respectively. The net charge of the 

framework at this point was calculated. Then, the partial atomic charges of the framework 
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atoms outside the functional sites were adjusted by subtracting the net charge divided by the 

number of framework atoms outside the functional sites, to neutralize the overall charge of the 

framework. The distribution of partial atomic charges for each element in the original 

unfunctionalized structures (estimated by DDEC6) and the functionalized structures (modified 

from PACMAN-predicted results) is shown in Figure S10. The com-parison indicates that the 

distribution of framework charges outside the functional groups in the functionalized structures 

is similar to the DDEC6-estimated charges in the original unfunctionalized structures. 

GCMC simulations for the 608 original structures without framework charge have been 

completed, while simulations for approximately 900 out of 1,843 functionalized structures with 

full framework charges have been finished. We have collected the results so far, and the exact 

number of data points for each plot is provided in the figure captions. Figure S11 compares 

the H2 DCs of original unfunctionalized structures with framework charges neglected or 

involved. The results show no significant difference between the DCs calculated with or 

without framework charges involved. Similarly, Figure S12 compares the H2 DCs of Mg-

alkoxide functionalized structures with the charges outside functional sites neglected or 

involved. While there is some minor discrepancy, the overall results show no significant 

difference.  

We also compared the percentages of van der Waals (vdW) and electrostatic energies from 

the total energies obtained during GCMC simulations of both original and several 

functionalized structures. Figure S13 shows the proportions of vdW and electrostatic energies 
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in the total adsorbate-host energies after assigning framework charges to the original structures. 

For all 3,648 GCMC simulations of the 608 original structures, the electrostatic interactions 

energies were less than 5% of the total energies. In these cases, vdW energies dominated, and 

assigning framework charges (i.e., including host-adsorbate Coulomb energies) did not 

significantly impact the overall simulation results. 

For the functionalized structures, assigning partial atomic charges only to the Mg and O 

atoms in the functional sites resulted in electrostatic interactions energies accounting for 30–

40% of the total adsorbate-host energies during GCMC simulations. Assigning partial atomic 

charges to other framework atoms outside the functional sites did not significantly change the 

percentage of electrostatic interactions energies, with only minor differences observed, 

regardless of the functionalization type and ratio. 

Based on the results, the interaction between H2 adsorbates and the frameworks in the 

original structures is primarily driven by vdW forces, and neglecting framework charges (and 

thus host-adsorbate electrostatic interactions) does not significantly affect the simulated H2 

adsorption uptakes. For Mg-functionalized structures, electrostatic interaction energies 

contribute 30–40% of the total adsorbate-host energies, but this contribution remains 

unchanged whether or not partial charges are assigned to atoms outside the functional sites. As 

a result, it is reasonable to only consider the atomic charges on the Mg_cat and O_cat atoms at 

the functional sites in the functionalized structures during GCMC simulations. 
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Table S7. DOE Technical Targets for Onboard Hydrogen Storage for Light-Duty Vehicles 

Storage parameter Unit 
2020 

target 

2025 

target 

Ultimate 

target 

Usable, specific-energy from H2 

(net useful energy/max system mass) 
wt.% 4.5 5.5 6.5 

Usable energy density from H2 

(net useful energy/max system volume) 
g/L 30 40 50 

 



 

S28 

 

Figure S8. Comparison of the (a) gravimetric and (b) volumetric hydrogen uptakes of two-site 

functionalized structures calculated using FF1 and FF2. 

  

a 

b 
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Figure S9. Enhancement of the gravimetric and volumetric H2 DCs after different types and 

ratios of functionalization, compared to the density of the original (unfunctionalized) 

structures. Colors represented the different functionalization, as written in the legend. 
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Figure S10. Distribution of partial atomic charges for framework atoms in original 

unfunctionalized structures (blue) and Mg-alkoxide functionalized structures (red), sorted by 

element type. For functionalized structures, C_cat, O_cat, and Mg_cat represent the atoms from 

the functional sites, while C and O without subscripts refer to atoms outside the functional 

sites.  
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Figure S11. Comparison of the gravimetric (upper) and volumetric (lower) hydrogen DCs of 

original unfunctionalized structures with framework charges neglected or involved. 609 data 

points are included in each subplot. 
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Figure S12. Comparison of the gravimetric (upper) and volumetric (lower) hydrogen DCs of 

functionalized structures with partial atomic charges assigned only to the Mg and O atoms in 

the functional sites (without framework charge) or with partial atomic charges assigned to all 

framework atoms (with framework charge). 905, 929, 936 data points are included in sub-plots 

of 111 K, 231 K, and 296 K, respectively.
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Figure S13. Distribution of the percentages of vdW energies (black) and Coulomb energies 

(yellow) in the total host-adsorbate energies of all 3,648 GCMC simulations on the 608 original 

unfunctionalized structures.  

 

 

Figure S14. Comparison of the percentages of van der Waals (vdW) energies (left) and 

Coulomb energies (right) in the total host-adsorbate energies from 22 GCMC simulations on 

four functionalized 07010N3 structures with different functionalization types and ratios, 

represented by different colors. The X-axis shows the results with partial atomic charges 

assigned only to the Mg and O atoms in the functional sites, while the Y-axis shows the results 

with partial atomic charges assigned to all framework atoms. 
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S7. Distribution of features and the H2 adsorption uptakes of COFs in the dataset 

Figure S15 shows the distribution of the GCMC-simulated H2 volumetric uptakes in the 

dataset. Figure S16 shows the distribution of the features (textural properties, temperatures, 

and functionalization types & ratios) and targets (gravimetric and volumetric uptakes) for the 

ML training.  
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Figure S15. The distribution of the H2 volumetric uptakes in the dataset. Different colors 

indicate the uptakes at different T and P conditions, as shown in the legend. 
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Figure S16. The distribution of the features (textural properties, temperatures, and 

functionalization types & ratios) and targets (gravimetric and volumetric uptakes) for the ML 

training. 
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S8. GCMC simulations of original and functionalized structures with specific FF models 

of two selected materials 

Table S8, Figure S17 and S18 show the H2 isotherms of the original and functionalized 

structures of the two selected materials discussed in Section 3.3 in the main text.  

The H2 uptakes of the 100 % two-site functionalized structures, named by _two_all, 

calculated from the force field developed from single-site model (FF1) and two-site model 

(FF2) were compared with each other to have a better insight into their description of the 

adsorptions on the different types of functional sites. As shown in Figure S17(b) and S18(b), 

for the 21320N2_two_all, the H₂ uptakes calculated from FF1 and FF2 did not show significant 

differences at both lower and ambient temperatures, for both gravimetric and volumetric 

capacities. This resulted in no difference in the deliverable capacity (DC), defined as the 

difference between the uptakes at 100 bar and 5 bar. However, for the 07010N3_two_all, the 

larger number of functionalization sites and different textural properties made the influence of 

the Mg sites on the overall adsorption behavior more pronounced. The isotherms calculated 

with FF1 showed a faster increase at low pressure and higher uptakes at high pressure, leading 

to differences in the DC. At lower temperatures and pressures (e.g., 111 K and 5 bar), the H₂ 

uptake calculated by FF1 increased faster and showed a larger difference compared to the 

uptake calculated by FF2. However, at higher pressure near 100 bar, the uptake reached 

saturation loading, leading to a smaller difference between the uptakes calculated by the 

different force fields. In summary, FF1 consistently resulted in higher uptakes than FF2. At 
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low temperatures, the difference between the uptakes calculated by FF1 and FF2 was larger at 

5 bar compared to 100 bar, resulting in the DC calculated by FF2 being higher than that 

calculated by FF1. At ambient temperature, the difference between the uptakes calculated by 

FF1 and FF2 was smaller at 5 bar compared to 100 bar, leading to the DC calculated by FF2 

being lower than that calculated by FF1. 
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Table S8. Textural properties of the two selected COFs 

Structure 

name 

PLD 

(Å) 

LCD 

(Å) 

ASA 

(m2/cm3) 

Density 

(g/cm3) 
VF 

# of potential 

functional sites 

per unit cell 

21320N2 18.1 18.5 1176.11 0.55 0.72 16 

07010N3 8.1 9.3 2165.58 0.42 0.77 48 
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Figure S17. (a) Visualization of original and functionalized structures of 21320N2 (C: grey, 

N: blue, H: white, O: red, Mg: green). (b) H2 adsorption isotherms of 21320N2_two_all at 

different temperature, calculated with FF1 and FF2, in gravimetric and volumetric units. (c) H2 

adsorption isotherms of original and functionalized 21320N2 at different temperature, 

calculated with corresponding force fields, in gravimetric and volumetric units. 
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Figure S18. (a) Visualization of original and functionalized structures of 07010N3 (C: grey, 

N: blue, H: white, O: red, B: pink, Mg: green). (b) H2 adsorption isotherms of 

07010N3_two_all at different temperature, calculated with FF1 and FF2, in gravimetric and 

volumetric units. (c) H2 adsorption isotherms of original and functionalized 07010N3 at 

different temperature, calculated with corresponding force fields, in gravimetric and volumetric 

units. 
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S9. Traditional tree-based ML models training 

Three different tree-based ML models, including Gradient Boost Regression (GBR), 

Random Forest (RF), and Decision Tree Regression (DT), were trained on the same training 

dataset with the same input features and targets.  

Table S9 shows the searching spaces of the hyperparameters of each algorithm. Table S10 

shows the optimal sets of hyperparameter of each trained model. Table S11 shows the R2 

scores of each trained model. Based on the R2 scores, the GBR models demonstrate high R² 

scores for both the training and test sets, indicating a lower degree of overfitting. Therefore, 

the GBR models were considered the best for predicting H2 uptake among the three algorithms. 

 Figure S19 shows the comparison between the GBR-predicted and the GCMC-calculated 

H2 uptakes of both training and test set, corresponding to the Figure 7(a) in Section 3.4 of the 

main text. Figure S20 shows the same comparison, but with coloring the points differently 

according to the different temperatures.  
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Table S9. Searching spaces of the hyperparameters of each algorithm 

GBR 

Hyperparameter Space 

n_estimators Integer(1,200) 

max_depth Integer(1,10) 

num_parallel_tree Integer(1,10) 

min_child_weight Integer(1,10) 

learning_rate Real(0.001,1) 

subsample Real(0.01,1) 

gamma Real(0.001,10) 

alpha Real(0,1) 

reg_alpha Real(2,10) 

reg_lambda Real(10,5) 

 

RF 

Hyperparameter Space 

n_estimators Integer(1,200) 

max_depth Integer(1,30) 

random_state Integer(1,300) 

 

DT 

Hyperparameter Space 

max_depth Integer(1,30) 

min_samples_split Integer(2,30) 

min_samples_leaf Integer(1,30) 
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Table S10. The optimal sets of hyperparameter of each trained model 

Hyperparameter GBR_g GBR_v 

n_estimators 183 173 

max_depth 6 10 

num_parallel_tree 10 10 

min_child_weight 5 1 

learning_rate 0.4817 1.0 

subsample 0.7033 0.4710 

gamma 0.001 0.001 

alpha 1.0 0.9399 

reg_alpha 2.0 2.0 

reg_lambda 10.0 14.04 

 

Hyperparameter RF_g RF_v 

n_estimators 187 200 

max_depth 13 21 

random_state 300 300 

 

Hyperparameter DT_g DT_v 

max_depth 9 9 

min_samples_split 3 2 

min_samples_leaf 1 8 
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Table S11. R2 scores of various tree-based ML algorithms for H2 uptakes prediction. 

Algorithm 
Target: Gravimetric DC Target: Volumetric DC 

Training set Test set Training set Test set 

Gradient Boost Regression 0.9977 0.9946 0.9992 0.9939 

Random Forest 0.9989 0.9918 0.9835 0.9734 

Decision Tree Regression 0.9969 0.9855 0.9979 0.9839 
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Figure S19. The comparison between the GBR-predicted and the GCMC-calculated H2 

uptakes at both adsorption and desorption pressures of training set (11,731 points) and test set 

(2,933 points). The upper subplots are the results of GBR_g model predicting the gravimetric 

uptakes; the lower subplots are the results of GBR_v model predicting the volumetric uptakes. 
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Figure S20. The comparison between the GBR-predicted and the GCMC-calculated H2 

uptakes at both adsorption and desorption pressures, coloring the points differently according 

to the different temperatures. The upper subplots are the results of GBR_g model predicting 

the gravimetric uptakes; the lower subplots are the results of GBR_v model predicting the 

volumetric uptakes. 
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S10. Crystal Graph Convolutional Neural Network (CGCNN) 

An example output list of the CGCNN model was shown in Table S12, including 30 values 

of the uptakes of original/functionalized structures at three different temperatures and two 

different pressures. The hyperparameters of the CGCNN models were selected manually as 

shown in Table S13. The loss curves of CGCNN_g and CGCNN_v models are showed in 

Figure S21. As shown in the loss curves, the MAE dropped to an acceptable region after 500 

epochs and showing no significant evidence of overfitting.  

Figure S22 shows the comparison between the CGCNN-predicted and the GCMC-

calculated H2 uptakes of both training and test set, corresponding to the Figure 9(a) in Section 

3.4 of the main text. Figure S23 shows the same comparison, but with coloring the points 

differently according to the different temperatures.  
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Table S12. Example output list of the CGCNN models 

ori_111_5 ori_111_100 ori_231_5 ori_231_100 ori_296_5 ori_296_100 

4.25 25.82 0.60 8.99 0.39 6.27 

single_half 

_111_5 

single_half 

_111_100 

single_half 

_231_5 

single_half 

_231_100 

single_half 

_296_5 

single_half 

_296_100 

8.96 29.04 1.01 11.12 0.51 7.42 

single_all 

_111_5 

single_all 

_111_100 

single_all 

_231_5 

single_all 

_231_100 

single_all 

_296_5 

single_all 

_296_100 

11.40 27.90 1.62 12.00 0.67 8.14 

two_half 

_111_5 

two_half 

_111_100 

two_half 

_231_5 

two_half 

_231_100 

two_half 

_296_5 

two_half 

_296_100 

9.69 28.16 0.93 10.97 0.49 7.30 

two_all 

_111_5 

two_all 

_111_100 

two_all 

_231_5 

two_all 

_231_100 

two_all 

_296_5 

two_all 

_296_100 

15.79 30.74 1.94 13.51 0.75 8.88 
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Table S13. The hyperparameter of the trained CGCNN models 

Hyperparameter Search space Final adopted 

Epoch 500, 1000 500 

Optimizer SGD SGD 

Learning rate 0.001, 0.05, 0.01 0.001 

Momentum 0.9 0.9 

weight_decay 1e-6 1e-6 

Batch size 4 4 

# of convolutional layers 3, 5 3 

# of hidden layers 1, 3 1 

Activate function Softplus Softplus 
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Figure S21. The loss curves of final-adopted CGCNN_v and CGCNN_g models. 
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Figure S22. The comparison between the CGCNN-predicted and the GCMC-calculated H2 

uptakes at both adsorption and desorption pressures and of training set (14,190 points) and test 

set (3,540 points). The upper subplots are the results of CGCNN_g model predicting the 

gravimetric uptakes; the lower subplots are the results of CGCNN_v model predicting the 

volumetric uptakes. 
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Figure S23. The comparison between the CGCNN-predicted and the GCMC-calculated H2 

uptakes at both adsorption and desorption pressures, coloring the points differently according 

to the different temperatures. The upper subplots are the results of CGCNN_g model predicting 

the gravimetric uptakes; the lower subplots are the results of CGCNN_v model predicting the 

volumetric uptakes. 
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S11. ML prediction of H2 storage capacity of hypothetical COF structures in ReDD-

COFFEE database (DB) 

With the help of our trained GBR models, we are now able to efficiently screen hypothetical 

COFs from the ReDD-COFFEE DB. It is important that the textural properties of two datasets 

(CURATED-COF DB that ML model is trained on and ReDD-COFFEE DB that developed 

ML model was used to predict H2 properties). The textural property data for the COFs in the 

ReDD-COFFEE DB, such as accessible surface area and pore volume, were calculated using a 

probe radius of 1.84 Å, which is consistent with the dataset our GBR model is trained on. 

Figure S24 compares the textural properties of the CURATED-COF DB cover most of 

those from the ReDD-COFFEE DB. However, as illustrated by the distribution curves, the 

hypothetical COFs from ReDD-COFFEE tend to have lower density and larger void fraction 

(VF), which significantly differs from the distribution observed in CURATED-COFs. Since 

both VF and density are key factors in predicting adsorption performance, this disparity could 

introduce some inaccuracies in the predictions when applying the GBR models trained on 

CURATED-COFs to the ReDD-COFFEE database. 
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Figure S24. Comparison of the textural properties of different database calculated with 

different probe radius. The kernel density estimation (KDE) curves on the x and y axis represent 

the distribution of each property. (a) Density vs. VF, with the 1.84 Å probe radius; (b) Density 

vs. ASA, with the 1.84 Å probe radius.  
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