## Supporting Information for:

## Solubilities and Self-diffusion Coefficients of Light n-alkanes in NaCl

Solutions at the temperature range (278.15 – 308.15) K and pressure

range (1 - 300) bar and Thermodynamics Properties of Their

## Corresponding Hydrates at (150 – 290) K and (1 – 7000) bar

Bin Fang<sup>a,b</sup>, Parsa Habibi<sup>b</sup>, Othonas A. Moultos<sup>b\*</sup>, Tao Lü<sup>c,d</sup>, Fulong Ning<sup>e,f,g</sup>, Thijs J.H. Vlugt<sup>b\*\*</sup>

<sup>a</sup> School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China

<sup>b</sup> Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials

Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands

<sup>c</sup> School of Automation, China University of Geosciences, Wuhan 430074, China

<sup>d</sup> Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems, Wuhan 430074, China

<sup>e</sup> Faculty of Engineering, China University of Geosciences, Wuhan, Hubei 430074, China

<sup>f</sup> National Center for International Research on Deep Earth Drilling and Resource Development, China University of Geosciences, Wuhan 430074, China

<sup>g</sup> Laboratory for Marine Mineral Resources, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China

\*Corresponding author: O.Moultos@tudelft.nl (Othonas A. Moultos)

\*\*Corresponding author: T.J.H.Vlugt@tudelft.nl (Thijs J.H. Vlugt)

Table S1. Non-bonded parameters for the TIP4P/2005<sup>1</sup> water force field, methane-methane, and methane-water interactions optimized by Docherty. <sup>2</sup>  $\sigma$  and  $\varepsilon$  are the Lennard-Jones parameters, in unit of Å and K, respectively; *q* is the partial charge of an atom in units of elementary charge (*e*); *r* is the distance between particles in units of Å

| Model           | $\varepsilon/k_B$ (K) | σ (Å)  | <b>q</b> н( <b>e</b> ) | <i>г</i> ом (Å) | <i>г</i> он (Å) | ∠HOH, deg |
|-----------------|-----------------------|--------|------------------------|-----------------|-----------------|-----------|
| Water           | 03.2                  | 3 1580 | 0 5564                 | 0 1546          | 0.9572          | 104 52    |
| TIP4P/2005      | 95.2                  | 5.1509 | 0.5504                 | 0.1340          | 0.9372          | 104.32    |
| CH4             | 147.5                 | 3.73   |                        |                 |                 |           |
| Water-CH4       | 125 45                | 2 1115 |                        |                 |                 |           |
| $(k_{ij}=1.07)$ | 123.43                | 3.4443 |                        |                 |                 |           |

Table S2. Non-bonded parameters for the TraPPE<sup>3</sup> alkane force field, and Madrid-2019 ion forcefield.<sup>4</sup>  $\sigma$  and  $\varepsilon$  are the Lennard-Jones parameters, in unit of Å and K, respectively; q is the partial charge of an atom in units of elementary charge (e).

| Pseudo (atom)                     | $\varepsilon/k_B$ (K) | σ (Å)   | <i>q</i> <sub>H</sub> ( <i>e</i> ) | Force field |
|-----------------------------------|-----------------------|---------|------------------------------------|-------------|
| CH3                               | 98                    | 3.75    |                                    | TreDDE      |
| CH2                               | 46                    | 3.95    |                                    | ITAPPE      |
| Na <sup>+</sup>                   | 177.1257              | 2.21737 | 0.85                               |             |
| Cl                                | 9.256                 | 4.69906 | -0.85                              | Maduid      |
| Na <sup>+</sup> - Cl <sup>-</sup> | 173.142               | 3.00512 |                                    |             |
| Na <sup>+</sup> -water            | 95.4683               | 2.60838 |                                    | 2019        |
| Cl <sup>-</sup> -water            | 7.4584                | 4.23867 |                                    |             |

Table S3. Bonded parameters for the TraPPE<sup>3</sup> alkane force field. Fixed bond lengths are used; The bond-bending energy is calculated according to:  $U_{bend}(\theta) = \frac{k_{\theta}}{2}(\theta - \theta_{eq})^2$ , where  $k_{\theta}$  is the force constant,  $\theta$  and  $\theta_{eq}$  are the angle and the equilibrium angle, respectively; The torsion energy is calculated as:  $U_{torsion}(\phi) = c_0 + c_1[1 + \cos(\phi)] + c_2[1 - \cos(2\phi)] + c_3[1 + \cos(3\phi)]$ , where  $c_0, c_1$ ,  $c_2, c_3$  are constants;  $\phi$  represents the dihedral angle, which corresponds to synperiplanar (*cis*)

*c*<sub>2</sub>, *c*<sub>3</sub> are constants;  $\phi$  represents the dihedral angle, which corresponds to synperiplanar (*cis*) conformations when  $\phi=0^{\circ}$ , and antiperiplanar (*trans*) conformations when  $\phi=180^{\circ}$ .

| Bond-stretching interaction |                                                            |                           |               |                           |  |  |
|-----------------------------|------------------------------------------------------------|---------------------------|---------------|---------------------------|--|--|
| Туре                        | r (Å)                                                      |                           |               |                           |  |  |
| СНЗ-СНЗ                     | 1.54                                                       |                           |               |                           |  |  |
| CH3-CH2                     | 1.54                                                       |                           |               |                           |  |  |
| Bond-bending interaction    |                                                            |                           |               |                           |  |  |
| Туре                        | $\theta_{eq}$ (deg) $k_{\theta}/k_B$ (K/rad <sup>2</sup> ) |                           |               |                           |  |  |
| СНЗ-СН2-СНЗ                 | 114 62500                                                  |                           |               |                           |  |  |
| CH3-CH2-CH2                 | 114 62500                                                  |                           |               |                           |  |  |
| Dihedral torsion parameter  |                                                            |                           |               |                           |  |  |
| Туре                        | $c_0/k_B(\mathbf{K})$                                      | $c_{l}/k_{B}(\mathrm{K})$ | $c_2/k_B$ (K) | $c_{3}/k_{B}(\mathbf{K})$ |  |  |
| СН3-СН2-СН2-СН3             | 0.00                                                       | 355.03                    | -68.19        | 791.32                    |  |  |

| P (bar)<br>T(K) | 100 bar  | phase  | 200 bar  | phase | 300 bar  | phase |  |
|-----------------|----------|--------|----------|-------|----------|-------|--|
|                 | Methane  |        |          |       |          |       |  |
| 278.15          | 0.80660  | G      | 0.68713  | G     | 0.63856  | G     |  |
| 288.15          | 0.82922  | G      | 0.72169  | G     | 0.67625  | G     |  |
| 298.15          | 0.84912  | G      | 0.75297  | G     | 0.71128  | G     |  |
| 308.15          | 0.86672  | G      | 0.78123  | G     | 0.74371  | G     |  |
|                 |          | Ethane |          |       |          |       |  |
| 278.15          | 0.25544  | L      | 0.17176  | L     | 0.15184  | L     |  |
| 288.15          | 0.30216  | L      | 0.20323  | L     | 0.17925  | L     |  |
| 298.15          | 0.35124  | L      | 0.23667  | L     | 0.20841  | L     |  |
| 308.15          | 0.40173  | G      | 0.27168  | G     | 0.23904  | G     |  |
|                 | Propane  |        |          |       |          |       |  |
| 278.15          | 0.069011 | L      | 0.048906 | L     | 0.045842 | L     |  |
| 288.15          | 0.088635 | L      | 0.062493 | L     | 0.058231 | L     |  |
| 298.15          | 0.11135  | L      | 0.078173 | L     | 0.07246  | L     |  |
| 308.15          | 0.13715  | L      | 0.095941 | L     | 0.08852  | L     |  |
|                 | n-butane |        |          |       |          |       |  |
| 278.15          | 0.017921 | L      | 0.0135   | L     | 0.013472 | L     |  |
| 288.15          | 0.024859 | L      | 0.018576 | L     | 0.01838  | L     |  |
| 298.15          | 0.033547 | L      | 0.024887 | L     | 0.024434 | L     |  |
| 308.15          | 0.04417  | L      | 0.032556 | L     | 0.031738 | L     |  |

Table S4. Fugacity coefficients obtained by REFPROP<sup>5</sup> for the four light alkanes at different temperatures and pressures

*P* is pressure; *T* is temperature; G represents gas phase; L represent liquid phase.



Figure S1. Excess chemical potential of  $CH_4$  in water at 1 bar as a function of temperature. Docherty's simulation data and Paschek's experimental data are obtained from Ref. [2]<sup>2</sup> and Ref. [6]<sup>6</sup> respectively.

Table S5. Calculated excess chemical potential  $\mu_{ex}$  for ethane in water at 298.15 K and 1 bar using different force field combinations. The reference value from experimental data is equal to 7.59 kJ/mol<sup>7</sup>

| Water model                   | C <sub>2</sub> H <sub>6</sub> model | simulation<br>value | difference |
|-------------------------------|-------------------------------------|---------------------|------------|
| <b>TIP4P2005</b> <sup>1</sup> | TraPPE <sup>3</sup>                 | 8.38±0.49           | 0.79       |
| <b>TIP4P2005</b> <sup>1</sup> | HH-alkane <sup>8</sup>              | 7.04±0.067          | -0.55      |
| <b>TIP4P2005</b> <sup>1</sup> | NERE <sup>9</sup>                   | 9.02±0.2            | 1.43       |
| SPC/E <sup>10</sup>           | TraPPE <sup>3</sup>                 | 8.51±0.40           | 0.92       |
| SPC/E <sup>10</sup>           | NERE <sup>9</sup>                   | 8.42±0.28           | 0.83       |
| SPC <sup>11</sup>             | TraPPE <sup>3</sup>                 | 8.21±0.28           | 0.62       |
| SPC <sup>11</sup>             | NERE-0.035 <sup>12</sup>            | 19.45±0.08          | 11.86      |
| SPC <sup>11</sup>             | NERE-0.083 <sup>12</sup>            | 7.14±0.04           | -0.45      |

Table S6. Calculated excess chemical potential  $\mu_{ex}$  for propane in water at 298.15 K and 1 bar using different force fields for propane

| Exp. value <sup>7</sup> | TraPPE <sup>3</sup> | HH-alkane <sup>8</sup> | NERE <sup>9</sup> |
|-------------------------|---------------------|------------------------|-------------------|
| 8.15                    | 9.5±0.64            | 8.88±1.14              | 9.34              |



Figure S2. Solubilities of ethane in aqueous NaCl solutions as a function of the NaCl molality at different pressures ((a)1bar, (b)100 bar, (c) 200 bar, (d) 300bar) and temperatures (278.15-308.15 K).



Figure S3. Solubilities of propane in aqueous NaCl solutions as a function of the NaCl molality at different pressures ((a)1bar, (b)100 bar, (c) 200 bar, (d) 300bar) and temperatures (278.15-308.15 K).



Figure S4. Solubilities of butane in aqueous NaCl solutions as a function of the NaCl molality at different pressures ((a)1bar, (b)100 bar, (c) 200 bar, (d) 300bar) and temperatures (278.15-308.15) K.



Figure S5. Calculated viscosities of aqueous NaCl solutions with one methane molecule at different temperatures and pressures ((a) 1 bar, (b) 100 bar, (c) 200 bar, (d) 300 bar) as a function of the NaCl molality.



Figure S6. Calculated self-diffusion coefficients of methane in aqueous NaCl solutions at different temperatures and pressures ((a) 1 bar, (b) 100 bar, (c) 200 bar, (d) 300 bar) as a function of NaCl molality.

(1) Abascal, J. L. F.; Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 2005, 123 (23), 234505

(2) Docherty, H.; Galindo, A.; Vega, C.; Sanz, E. A potential model for methane in water describing correctly the solubility of the gas and the properties of the methane hydrate. *J. Chem. Phys.* 2006, *125* (7), 074510

(3) Martin, M. G.; Siepmann, J. I. Transferable Potentials for Phase Equilibria. 1. United-Atom Description of n-Alkanes. J. Phys. Chem. B 1998, 102 (14), 2569-2577

(4) Zeron, I. M.; Abascal, J. L. F.; Vega, C. A force field of Li<sup>+</sup>, Na<sup>+</sup>, K<sup>+</sup>, Mg<sup>2+</sup>, Ca<sup>2+</sup>, Cl<sup>-</sup>, and SO4<sup>2-</sup> in aqueous solution based on the TIP4P/2005 water model and scaled charges for the ions. *J. Chem. Phys.* 2019, *151* (13), 134504

(5) Eric, L.; Marcia, H.; Mark, M. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 9.1. Natl Std. Ref. Data Series (NIST NSRDS), National Institute of Standards and Technology, Gaithersburg, MD: 2013.

(6) Paschek, D. Temperature dependence of the hydrophobic hydration and interaction of simple solutes: An examination of five popular water models. *J. Chem. Phys.* 2004, *120* (14), 6674-6690

(7) Wilhelm, E.; Battino, R.; Wilcock, R. J. Low-pressure solubility of gases in liquid water. *Chem. Rev.* 1977, 77 (2), 219-262

(8) Ashbaugh, H. S.; Liu, L.; Surampudi, L. N. Optimization of linear and branched alkane interactions with water to simulate hydrophobic hydration. *J. Chem. Phys.* 2011, *135* (5), 054510

(9) Nath, S. K.; Escobedo, F. A.; de Pablo, J. J. On the simulation of vapor-liquid equilibria for alkanes. J. Chem. Phys. 1998, 108 (23), 9905-9911

(10) Berendsen, H. J. C.; Grigera, J. R.; Straatsma, T. P. The missing term in effective pair potentials. J. Phys. Chem. 1987, 91 (24), 6269-6271

(11) Berendsen, H. J. C.; Postma, J. P. M.; van Gunsteren, W. F.; Hermans, J. Interaction Models for Water in Relation to Protein Hydration. In *Intermolecular Forces: Proceedings of the Fourteenth Jerusalem Symposium on Quantum Chemistry and Biochemistry Held in Jerusalem, Israel, April 13–16, 1981*, Pullman, B. Ed.; Springer Netherlands, 1981; pp 331-342.

(12) Torres-García, G.; Luis, D. P.; Odriozola, G.; López-Lemus, J. Ethane clathrates using different water-ethane models: Molecular dynamics. *Physica A* 2018, *491*, 89-100