Supporting Information for: Mutual diffusivities of mixtures of carbon dioxide and hydrogen and their solubilities in brine: Insight from molecular simulations

1

2

Thejas Hulikal Chakrapani,[†] Hadi Hajibeygi,[†] Othonas A. Moultos,[‡] and Thijs J. H. Vlugt^{*,‡}

[†]Reservoir Engineering, Geoscience and Engineering Department, Faculty of Civil Engineering and Geosciences, Delft University of Technology, 2628 CN Delft, The Netherlands

[‡]Engineering Thermodynamics, Process and Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, 2628 CB Delft, The Netherlands;

E-mail: t.j.h.vlugt@tudelft.nl

³ List of Figures

4	S1	H ₂ -CO ₂ mixture densities as a function of x_{H_2} for $p \in [10, 30]$ MPa	S5
5	S2	H ₂ -CO ₂ mixture densities as a function of x_{H_2} for $p \in [35, 45]$ MPa	S6
6	S3	H ₂ -CO ₂ mixture densities as a function of p for $x_{H_2} \in [0, 0.5]$	S7
7	S4	H ₂ -CO ₂ mixture densities as a function of p for $x_{H_2} \in [0.6, 1]$	$\mathbf{S8}$
8	S5	H ₂ -CO ₂ mixture densities: MD vs. REFPROP, $p \in [5, 15]$ MPa	S9
9	S6	H ₂ -CO ₂ mixture densities: MD vs. REFPROP, $p \in [20, 30]$ MPa	S10
10	S7	H ₂ -CO ₂ mixture densities: MD vs. REFPROP, $p \in [35, 50]$ MPa	S11
11	S8	H ₂ -CO ₂ mixture compressibility factors for $x_{H_2} \in [0, 0.4]$	S13
12	S9	H ₂ -CO ₂ mixture compressibility factors for $x_{H_2} \in [0.5, 1]$	S14
13	S10	H ₂ -CO ₂ mixture compressibility factors for $p \in [5, 50]$ MPa	S15
14	S11	H_2 - CO_2 mixture viscosity determination from MSDs	S17
15	S12	H ₂ -CO ₂ mixture viscosities as a function of $x_{\rm H_2}$ for $p \in [10, 30]$ MPa	S18
16	S13	H ₂ -CO ₂ mixture viscosities as a function of $x_{\rm H_2}$ for $p \in [35, 45]$ MPa	S19
17	S14	H ₂ -CO ₂ mixture viscosities as a function of p for $x_{H_2} \in [0.1, 0.4]$	S20
18	S15	H ₂ -CO ₂ mixture viscosities as a function of p for $x_{H_2} \in [0.6, 1]$	S21
19	S16	Self-diffusion coefficients from MSDs in a H_2 -CO ₂ mixture	S23
20	S17	Finite system-size effects on self-diffusion coefficients: low densities \ldots .	S25
21	S18	Finite system-size effects on self-diffusion coefficients: high densities \ldots .	S25
22	S19	Self-diffusivities of CO_2 and H_2 \hdots . 	S26
23	S20	Ratio of self-diffusion coefficients of CO_2 and H_2	S28
24	S21	Ratio of self-diffusivities of CO_2 and H_2 relative to pure components, I $~$	S29
25	S22	Ratio of self-diffusivities of CO_2 and H_2 relative to pure components, II $\ . \ .$	S30
26	S23	Effect of temperature on self-diffusion coefficients of CO_2 and H_2	S31
27	S24	Density dependence of self-diffusion coefficients of CO_2 and H_2 , I	S32

28	S25	Density dependence of self-diffusion coefficients of CO_2 and H_2,II	S33
29	S26	Maxwell-Stefan diffusion coefficients from cross-correlations of displacements.	S36
30	S27	Finite-size effects for the mutual diffusion coefficients	S37
31	S28	Fick diffusion coefficients of H_2 -CO ₂ mixtures for $p \in [15, 45]$ MPa	S38
32	S29	Effect of mixture composition on Fick diffusion coefficients $\ldots \ldots \ldots$	S39
33	S30	Effect of temperature on Fick diffusion coefficients	S40
34	S31	Principle of corresponding states for Fick diffusivities	S41
35	S32	Effect of pressure on the solubility of CO_2 , CO_2 -NaCl brine	S42
36	S33	Effect of temperature on the solubility of CO_2 , CO_2 -NaCl brine $\ldots \ldots$	S42
37	S34	Effect of NaCl concentration on the solubility of CO_2 in NaCl brine \ldots	S43
38	S35	Effect of pressure on the solubility of H_2 , H_2 -NaCl brine	S44
39	S36	Effect of temperature on the solubility of $H_2,H_2\mbox{-NaCl}$ brine $\hdots\hdddt\hdots\hdots\hdots\hdots\hdots\hdots\hdots\hdots\hdots\hdots\hdots\hdddt\hdots\hdo$	S44
40	S37	Effect of NaCl concentration on the solubility of H_2 , H_2 -NaCl brine \ldots .	S45

41 List of Tables

42	S1	Force field parameters used in this study	S46
43	S2	Densities, compressibilities, and total energies from MD simulations	S47
44	S3	Viscosities, thermodynamic factors, and self, Maxwell-Stefan and Fick diffu-	
45		sion coefficients.	S72
46	S4	Phase equilibria of CO_2 -NaCl brine systems from CFCMC simulations	S97
47	S5	Phase equilibria of H ₂ -NaCl brine systems from CFCMC simulations	S99
48	S6	Phase equilibria of H_2 -CO ₂ -NaCl brine systems from CFCMC simulations.	S101
49	S7	Fugacity coefficients of H_2 , CO_2 and H_2O in H_2 - CO_2 -NaCl brine systems	S104

⁵⁰ S1 Mixture Densities for H₂-CO₂ mixtures

⁵¹ S1.1 Preparation of systems for production runs in the NVE ⁵² ensemble

The procedure to prepare systems for production runs in the NVE ensemble using systems 53 consisting of 2000 molecules is described below. To avoid overlaps between molecules, binary 54 mixtures of H₂ and CO₂, simulated as rigid bodies, are placed inside a large cubic simulation 55 box (≈ 100 Å). Simulations of 2000 molecules are performed in the isotropic version of the 56 NPT ensemble using the Nosé-Hoover barostat and thermostat as described originally by 57 Martvna et al.¹ and Kamberaj et al.², using damping constants of 1 and 0.1 ps, respectively. 58 In the initialization phase, the time-step is gradually increased from 10^{-4} (fs) towards a final 59 value of 0.5 fs, to allow the system to relax towards equilibrium. Following the initialization 60 phase lasting 12.5 ps, a production phase lasting 250 ps ensues during which the density of 61 the system is recorded every time step. The NPT production phase is followed by a short 62 simulation in the NVT ensemble lasting 50 ps. In this phase, the size of the simulation box 63 is uniformly scaled at a constant rate, until it reaches a size that aligns with the average 64 density obtained in the NPT production phase. The simulations are continued with a fixed 65 box size for 25 ps (initialization phase) and 250 ps (production phase) in the NVT ensemble, 66 where the Nosé-Hoover thermostat is used with a damping constant of 0.1 ps. During the 67 production phase in the NVT ensemble, the average total energy is calculated, which is then 68 used to scale the molecule velocities to achieve a desired temperature in the NVE ensemble. 69 After scaling the velocities of all molecules, the system is simulated in the NVE ensemble 70 for 25 ps (initialization phase) and 250 ps (production phase). During the production phase 71 the temperature, pressure and the total energy of the system are recorded and checked for 72 conservation. The raw data for the simulations of the larger systems are provided in Table S2. 73

⁷⁴ S1.2 Mixture density vs mixture composition

⁷⁵ H₂-CO₂ mixture densities for p between 10 and 45 MPa, and T between 323.15 and 423.15 K, ⁷⁶ in increments of 25 K are plotted in Figs. S1-S2. Average densities obtained from MD ⁷⁷ simulations in the *NPT* ensemble (symbols), are compared to the corresponding values from ⁷⁸ the thermodynamic database REFPROP³ (solid lines).

Figure S1: H₂-CO₂ mixture densities (ρ) at 10, 15, 20 and 30 MPa as a function of the hydrogen mole fraction $x_{\rm H_2}$, and temperatures between 323.15 K and 423.15 K. Comparison between MD simulations (symbols) and REFPROP³ (solid lines). Error bars are smaller than the symbols. Lines are colored as per the legend in subfigure (a).

Figure S2: H₂-CO₂ mixture densities (ρ) at 35, 40, and 45 MPa as a function of the hydrogen mole fraction x_{H_2} , and temperatures between 323.15 K and 423.15 K. Comparison between MD simulations (symbols) and REFPROP³ (solid lines). Error bars are smaller than the symbols. Lines are colored as per the legend in subfigure (a). See the caption of Fig. S1.

⁷⁹ S1.3 Mixture density vs pressure

Figure S3: H₂-CO₂ mixture densities (ρ) for different hydrogen mole fractions between 0 and 0.5, as a function of the pressure p, and temperatures between 323.15 K and 423.15 K. Comparison between MD simulations (symbols) and REFPROP³ (solid lines). Error bars are smaller than the symbols. Lines are colored as per the legend in subfigure (a).

Figure S4: H₂-CO₂ mixture densities (ρ) for different hydrogen mole fractions between 0.6 and 1, as a function of the pressure p, and temperatures between 323.15 K and 423.15 K. Comparison between MD simulations (symbols) and REFPROP³ (solid lines). Error bars are smaller than the symbols. Lines are colored as per the legend in subfigure (a). See the caption of Fig. S3.

⁸⁰ S1.4 Relative deviations between simulations and REFPROP

Relative deviations, expressed as percentage, between the densities computed from MD simulations in the NPT ensemble and those acquired from the REFPROP³ database are displayed in Figs. S5-S7.

Figure S5: Relative deviations of the CO_2 -H₂ mixture densities obtained from MD simulations (ρ^{MD}) from the REFPROP³ database (ρ^{RFP}), plotted for $p \in [5, 15]$ MPa, as a function of x_{H_2} in the mixture. At each pressure the symbols are color coded (see Fig. S1) for T between 323.15 K and 423.15 K. The grey dashed lines indicate deviations of $\pm 5\%$.

Figure S6: Relative deviations of the CO_2 -H₂ mixture densities obtained from MD simulations (ρ^{MD}) from the REFPROP³ database (ρ^{RFP}), plotted for $p \in [20, 30]$ MPa, as a function of x_{H_2} in the mixture. At each pressure the symbols are color coded (see Fig. S1) for T between 323.15 K and 423.15 K. The grey dashed lines indicate deviations of $\pm 5\%$. See Fig. S5.

Figure S7: Relative deviations of the CO_2 -H₂ mixture densities obtained from MD simulations (ρ^{MD}) from the REFPROP³ database (ρ^{RFP}), plotted for $p \in [5, 15]$ MPa, as a function of x_{H_2} in the mixture. At each pressure the symbols are color coded (see Fig. S1) for T between 323.15 K and 423.15 K. The grey dashed lines indicate deviations of $\pm 5\%$. See Fig. S5.

⁸⁴ S2 Compressibility Factors for H_2 -CO₂ mixtures

The compressibility factor Z of a mixture is defined as,

86

$$Z = \frac{pV}{N_{\text{tot}}k_BT} \tag{S1}$$

where p is the pressure, V is the average volume of the simulation box, N_{tot} is the total number of molecules in the simulation box, k_B is the Boltzmann constant, and T is the absolute temperature. The variation of Z with p is plotted in Figs. S8-S9, and $Z(x_{\text{H}_2})$ is shown in Fig. S10.

Figure S8: Compressibility factors (Z) of H₂-CO₂ mixtures for $x_{H_2} \in [0, 0.4]$ and temperatures between 323.15 K and 423.15 K. Comparison between MD simulations (symbols) and REFPROP predictions (lines). Error bars are smaller than the symbols. Lines are colored according to the legend in subfigure (e).

Figure S9: Compressibility factors (Z) of H₂-CO₂ mixtures for $x_{H_2} \in [0.5, 1]$ and temperatures between 323.15 K and 423.15 K. Comparison between MD simulations (symbols) are REFPROP predictions (lines). Error bars smaller than the symbols. Lines are colored according to the legend in subfigure (e). See Fig. S8.

Figure S10: Compressibility factors (Z) of H₂-CO₂ mixtures plotted as a function of $x_{\rm H_2}$. Comparison between MD simulations (symbols) are REFPROP predictions (lines). Error bars smaller than the symbols. Lines are colored according to the legend in subfigure (a). See also Figs. S8 and S9.

⁹¹ S3 Viscosities of H₂-CO₂ mixtures

The viscosities are computed from the time integral of the autocorrelation function of all components of the traceless pressure tensor⁴,

$$\eta = \lim_{t \to \infty} \left[\frac{1}{10 \cdot 2t} \frac{V}{k_B T} \left\langle \sum_{\alpha \beta} \left(\int_0^t dt' p_{\alpha \beta}^{\text{Tr}}(t') \right)^2 \right\rangle \right]$$
(S2)

$$p_{\alpha\beta}^{\rm Tr} = \frac{p_{\alpha\beta} + p_{\beta\alpha}}{2} - \delta_{\alpha\beta} \left(\frac{1}{3}\sum_{k} p_{kk}\right) \tag{S3}$$

⁹² where t is time, V is the volume of the simulation box, k_B is the Boltzmann constant, T ⁹³ is the temperature, $p_{\alpha\beta}^{\text{Tr}}$ are the components of a traceless tensor derived from the pressure ⁹⁴ tensor $p_{\alpha\beta}$ using Eq. S3, $\delta_{\alpha\beta}$ is the Kronecker delta, and $\langle \cdots \rangle$ indicates an ensemble average. ⁹⁵ η is calculated by evaluating the slope of the linear segment of the so-called mean-square ⁹⁶ displacement, shown within the brackets $[\cdots]$ in Eq. S2. For calculation of viscosities, the ⁹⁷ mean square displacements of Eq. S2 are plotted on a log-log scale as a function of time, and ⁹⁸ the segment with a slope between 0.99 and 1.01 is chosen for computing η , see Fig. S11.

⁹⁹ S3.1 Determination of viscosities from MD simulations

Figure S11: (a) Mean-squared displacements (symbols) of η (MSD_{η}) calculated using Eq. S2, as a function of time for pure CO₂ at 50 MPa and 323.15 K. The black dashed line is a linear fit of the data within the highlighted region in red. (b) Slopes of the MSDs, calculated using 10 successive points, of the points falling within the shaded region have a slope between 0.99 and 1, and are used for the calculation of viscosities. We follow the same procedure to calculate viscosities of mixtures.

¹⁰⁰ S3.2 Viscosity vs mixture composition

Figure S12: H₂-CO₂ mixture viscosities (η) at 10, 15, 20 and 30 MPa as a function of the hydrogen mole fraction $x_{\rm H_2}$, and temperatures between 323.15 K and 423.15 K. Comparison between MD simulations (symbols) and REFPROP³ (solid lines). Error bars are smaller than the symbols. Lines are colored as per the legend in subfigure (b).

Figure S13: H₂-CO₂ mixture viscosities (η) at 35, 40, and 45 MPa as a function of the hydrogen mole fraction $x_{\rm H_2}$, and temperatures between 323.15 K and 423.15 K. Comparison between MD simulations (symbols) and REFPROP³ (solid lines). Error bars are smaller than the symbols. Lines are colored as per the legend in subfigure (a). See Fig. S12.

Figure S14: H_2 -CO₂ mixture viscosities (η) for different hydrogen mole fractions between 0.1 and 0.4, as a function of the pressure p, and temperatures between 323.15 K and 423.15 K. Comparison between MD simulations (symbols) and REFPROP³ (solid lines). Lines are colored as per the legend in subfigure (a).

Figure S15: H₂-CO₂ mixture viscosities (η) for different hydrogen mole fractions between 0.6 and 1, as a function of the pressure p, and temperatures between 323.15 K and 423.15 K. Comparison between MD simulations (symbols) and REFPROP³ (solid lines). Lines are colored as per the legend in subfigure (a). See Fig. S14.

¹⁰² S4 Self-diffusion coefficients

104

¹⁰³ The self diffusivity of the i^{th} species as calculated in an MD simulation is given by ^{4–6},

$$D_{i}^{\text{self,MD}} = \lim_{t \to \infty} \frac{\mathrm{d}}{\mathrm{dt}} \left[\frac{1}{6N_{i}} \left\langle \sum_{j=1}^{N_{i}} \left(\mathbf{r}_{j,i}(t) - \mathbf{r}_{j,i}(0) \right)^{2} \right\rangle \right]$$
(S4)

where N_i is the number of molecules of type i, $\mathbf{r}_{j,i}$ is the position vector of the j^{th} molecule at time t, and the diffusion coefficient in the three orthogonal directions x, y and z each contributes a factor 2 in the denominator.

¹⁰⁸ S4.1 Determination of self-diffusion coefficients from MD simula-

109 tions

Figure S16: (a) Mean-squared displacements (symbols) of H_2 (MSD), computed as per Eq. S4, as a function of time for H_2 in an equimolar mixture of CO₂ and H_2 at 50 MPa and 323.15 K. The green dashed line represents the square of the box length 22.97 Å, indicating a complete box traversal. The black dashed line is a linear fit based on data points within the red region. (b) Slopes of the MSDs, calculated using 10 successive points, of the points falling within the shaded region have a slope between 0.99 and 1, and are used for the calculation of self-diffusivities.

¹¹⁰ S4.2 Finite system-size effects for D^{self}

Based on the density of the system, the self-diffusion coefficients are corrected for the finitesize effects using the Yeh-Hummer correction term $D^{\text{YH}7,8}$,

$$D_i^{\text{self}} = D_i^{\text{self,MD}} + D^{\text{YH}}(T,\eta,L) = D_i^{\text{self,MD}} + \frac{k_B T \xi}{6\pi \eta L}$$
(S5)

where D_i^{self} is the finite-size corrected self diffusivity of the i^{th} species, ξ is a dimensionless 114 constant equal to 2.837298, and L is the box length of a cubic simulation box whose volume is 115 V. Similar to the calculation of η , the segment of the molecular mean-square displacements 116 with a slope between 0.99 and 1.01 on a log-log plot is chosen for the calculation of D_i^{self} , 117 see Fig. S16. As pointed out by Moultos *et al.*⁹ the Yeh-Hummer correction to $D_i^{\text{self,MD}}$ is 118 significant for dense systems and can be neglected otherwise, as will be shown in a subsequent 119 section. Self-diffusion coefficients are corrected for finite sizes as per Eq. S5, if the correction 120 is larger than 1% percent of $D_i^{\text{self,MD}}$. 121

In Figs. S17 and S18, D^{self} of H₂ and CO₂ are plotted as a function of $N_{\text{tot}}^{-\frac{1}{3}}$, since the size of the simulation box size scales as $L \propto N_{\text{tot}}^{\frac{1}{3}}$. For the dilute system (33 kg/m³ in Fig. S17), D^{self} of CO₂ and H₂ are nearly independent of the system size, while for the denser system (389 kg/m³ in Fig. S18), D^{self} of CO₂ and H₂ are linearly related to $N_{\text{tot}}^{-\frac{1}{3}}$ with a non-zero slope, suggesting a strong system-size dependence of D^{self} .

Figure S17: Finite-size corrections for self-diffusion coefficients of (a) CO_2 and (b) H_2 in an equimolar mixture, obtained from MD simulations for various system sizes (N=120, 250, 500, 1000, and 2000 molecules) at 5 MPa and 423.15 K. The mixture density is ca. 33 kg/m³. The red symbols represent self-diffusion coefficients from MD simulations, while the blue symbols are the Yeh-Hummer⁷ corrected self-diffusion coefficients (refer to Eq. 4 in the main text). The blue dashed line displays the mean value of the blue symbols. Self-diffusion coefficients are nearly independent of the system size.

Figure S18: Finite-size corrections for self-diffusion coefficients of (a) CO_2 and (b) H_2 in an equimolar mixture, obtained from MD simulations for various system sizes (N=120, 250, 500, 1000, and 2000 molecules) at 50 MPa and 323.15 K. The mixture density is ca. 389 kg/m³. The red symbols represent self-diffusion coefficients from MD simulations, while the blue symbols are the Yeh-Hummer⁷ corrected self-diffusion coefficients (refer to Eq. 4 in the main text). The red dashed line is a linear fit to the red symbols, whereas the blue dashed line displays the mean value of the blue symbols. Self-diffusion coefficients are strongly dependent of the system size. See Fig. S17.

 $_{127}$ S4.3 Self-diffusion coefficients of CO₂ and H₂

Figure S19: Self diffusivities of H_2 and CO_2 , represented on a linear vertical axis, as a function of the mole fraction of hydrogen, for various pressures. The symbols are colored according to the legend in subfigure (f).

$_{128}$ S4.4 Ratio of self-diffusion coefficients of CO₂ and H₂

¹²⁹ To test the validity of the Stokes-Einstein¹⁰ relation for mixtures of CO_2 and H_2 , assuming ¹³⁰ perfect-stick boundary conditions^{10,11}, we calculate the ratio,

$$\frac{D_{H_2}^{\text{self}}}{D_{CO_2}^{\text{self}}} = \frac{k_B T}{6\pi\eta R_{H_2}^{\text{eff}}} \cdot \frac{6\pi\eta R_{CO_2}^{\text{eff}}}{k_B T} = \frac{R_{CO_2}^{\text{eff}}}{R_{H_2}^{\text{eff}}} \approx 3.14,$$
 (S6)

where $R_{CO_2}^{\text{eff}}$ represents the separation between the carbon and oxygen atoms within the CO₂ molecule (1.16 Å), while $R_{H_2}^{\text{eff}}$ denotes half the distance between the two hydrogen atoms in H₂ (0.37 Å).

Figure S20: Ratio of self diffusion coefficients of H_2 and CO_2 as a function of the mole fraction of hydrogen, for various pressures. The dashed line represents the ratio of the Stokes-Einstein relation used to evaluate D^{self} of CO_2 and H_2 , see Eq. S6. The symbols are colored according to the legend in subfigure (a).

Figure S21: Comparing self-diffusion coefficients of CO_2 (triangles) and H_2 (squares) in CO_2 -H₂ mixtures versus their values in pure fluids at the same temperature and pressure, considering different pressures, temperatures, and hydrogen mole fractions. The symbols are colored according to the legend in subfigure (e). See Fig. S20.

Figure S22: Comparison of self-diffusivities of CO_2 (triangles) and H_2 (squares) in CO_2 - H_2 mixtures with their values in pure fluids at the same temperature and pressure, for different pressures, temperatures, and mole fractions of hydrogen. Subfigures (b)-(f) are identical to Figs. S21(a)-(e), except that the data are plotted on a vertical axis that is scaled linearly. The symbols are colored according to the legend in subfigure (f). See also Fig. S20.

¹³⁷ S4.6 Effect of temperature on the self-diffusion coefficients of CO₂

138

and H₂ in CO₂-H₂ mixtures

Figure S23: Comparing self-diffusion coefficients of CO_2 (triangles) and H_2 (squares) in CO_2 -H₂ mixtures versus their values at $T_0 = 323.15$ K, considering different pressures, temperatures, and hydrogen mole fractions. The symbols are colored according to the legend in subfigure (a). See also Figs. S21 and S22.

S4.7 Self-diffusion coefficients of H₂ and CO₂ as a function of mix ture density

Figure S24: Finite system-size corrected self-diffusion coefficients of CO_2 (triangles) and H_2 (squares) as a function of the mixture densities at various mole fractions of H_2 . The uncertainties in the computed self-diffusion coefficients are smaller than the symbol sizes. The symbols are colored according to the legend in subfigure (a).

S32

Figure S25: Finite system-size corrected self-diffusion coefficients of CO_2 (triangles) and H_2 (squares) as a function of the mixture densities, represented on linear horizontal and vertical axes. The uncertainties in the computed self-diffusion coefficients are smaller than the symbol sizes. The symbols are colored according to the legend in subfigure (a).

¹⁴¹ S5 Thermodynamic factors of diffusion for H_2 -CO₂ mix-¹⁴² tures

To compute the thermodynamic factors of binary mixtures of CO₂ and H₂, we obtain the Gibbs excess energy $G(p, T, x_{H_2})$ from REFPROP³, in units of J/mol. Values of G are normalized by RT, where R is the universal gas constant, and we define $Q = G(p, T, x_{H_2})/RT$. A least-squares regression fitting procedure is used to fit Q to a suitable model, such as the one proposed by Margules^{12,13}:

$$Q^{\text{Mar}} = x_{\text{H}_2} (1 - x_{\text{H}_2}) (A_{12} (1 - x_{\text{H}_2}) + A_{21} x_{\text{H}_2})$$
(S7)

where A_{12} and A_{21} are the fitting parameters. The value of Γ can be obtained by differentiating Q^{12} ,

$$\Gamma = 1 + 2x_{\rm H_2} \ (1 - x_{\rm H_2}) \ (\ (A_{21} - A_{12})(1 - 3x_{\rm H_2}) - A_{12}). \tag{S8}$$

¹⁴³ The van Laar model¹² is an alternative activity coefficient model¹². We found that the ¹⁴⁴ thermodynamic factors predicted by the Margules and van Laar models exhibit a variation ¹⁴⁵ of less than 1% for all values of p, T, and x_{H_2} , suggesting that the values of Γ are minimally ¹⁴⁶ affected by the underlying activity coefficient model.

¹⁴⁷ S6 Maxwell-Stefan and Fick Diffusion coefficients of ¹⁴⁸ H₂-CO₂ mixtures

The MS diffusion coefficients are determined by first calculating the Onsager coefficients Λ_{ik} at zero total linear momentum^{14–16}. Λ_{ik} is computed from the cross-correlations between the molecular displacements of species *i* and $k^{4,14-16}$,

$$\Lambda_{ik} = \lim_{t \to \infty} \frac{\mathrm{d}}{\mathrm{dt}} \left[\frac{1}{6N_{\mathrm{tot}}} \left\langle \left(\sum_{l=1}^{N_i} \left(\mathbf{r}_{l,i}(t) - \mathbf{r}_{l,i}(0) \right) \right) \times \left(\sum_{m=1}^{N_k} \left(\mathbf{r}_{m,k}(t) - \mathbf{r}_{m,k}(0) \right) \right) \right\rangle \right]$$
(S9)

where N_{tot} is the total number of molecules in a binary system consisting of N_i and N_k molecules of type *i* and *k*, respectively. Similar to the calculation of η and D^{self} , the segment of the cross-correlations with a slope between 0.99 and 1.01 on a log-log plot is chosen for the calculation of the Onsager coefficients, also see Fig. S26 of the Supporting Information. The MS diffusion coefficient $D^{\text{MS,MD}}$ for a binary mixture is then expressed as a linear combination of the Onsager coefficients^{4,14–16},

¹⁵⁹
$$D^{\text{MS,MD}} = \frac{x_2}{x_1} \Lambda_{11} + \frac{x_1}{x_2} \Lambda_{22} - 2\Lambda_{12}$$
 (S10)

where x_1 and x_2 are the mole fractions of the components in the binary mixture.

Determination of Maxwell-Stefan diffusion coefficient from S6.1 161 MD simulations 162

Figure S26: (a) Cross correlations of molecular displacements (Eq. S9 in the main text) (MSD_{Onsg}) are examined as a function of time in an equimolar mixture of H₂ and CO₂ at 323.15 K and 50 MPa. These correlations can have positive values for like species interactions (e.g., Carbon-Carbon in CO_2 shown in red symbols) and negative values for unlike species interactions (e.g., Carbon-Hydrogen shown in blue symbols). (b) Onsager coefficients (as per Eq. 9 in the main text) are derived by first plotting the absolute values of the cross correlations on a log-log scale and identifying the region with a slope within 1% of unity, see also Figs. S11 and S16. The sign of the slopes are adjusted based on the displacements shown in (a), are used for evaluation of the Maxwell-Stefan diffusion coefficient using Eq. 9 of the main text.
¹⁶³ S6.2 Finite system-size effects at ρ =389 kg/m³

165

171

 $\left(\frac{1}{2000}\right)^{\frac{1}{3}}\left(\frac{1}{1000}\right)^{\frac{1}{3}}$

 $\left(\frac{1}{500}\right)^{\frac{1}{3}}$

 $1/N^{1/3}$

 $\left(\frac{1}{250}\right)^{\frac{1}{3}}$

¹⁶⁴ Jamali *et al.*¹⁷ showed that the MS diffusion coefficients can be corrected according to,

$$D^{\rm MS} = D^{\rm MS, \rm MD} + \frac{1}{\Gamma} D^{\rm YH}$$
(S11)

where D^{MS} is the finite size corrected MS diffusivity, D^{YH} is the correction proposed by Yeh and Hummer⁷ for correcting self-diffusion coefficients computed from finite-size systems (see Eq. S5) and Γ is the thermodynamic factor. In the same article, Jamali *et al.*¹⁷ suggested that one only needs the Yeh-Hummer correction term⁷ D^{YH} to obtain the Fick diffusion coefficients in the thermodynamic limit^{12,17},

 $\left(\frac{1}{2000}\right)^{\frac{1}{3}}\left(\frac{1}{1000}\right)^{\frac{1}{3}}$

 $\left(\frac{1}{120}\right)^{-1}$

 $\left(\frac{1}{250}\right)^{\frac{1}{3}}$

 $\left(\frac{1}{500}\right)^{\frac{1}{3}}$

 $1/N^{1/3}$

Figure S27: Illustration of finite-size effects in the calculation of Maxwell-Stefan and Fick diffusion coefficients for an equimolar mixture at 50 MPa and 323.15 K ($\rho \approx 389 \text{ kg/m}^3$). The thermodynamic factor Γ used for the correction of the Maxwell-Stefan (see Eq. S11) and Fick diffusion coefficients (see Eq. S12) equals 0.31.

 $\left(\frac{1}{120}\right)^{\frac{1}{3}}$

 $_{172}$ S6.3 Fick diffusion coefficients of H₂-CO₂ mixtures

Figure S28: Finite-system-size-corrected Fick diffusion coefficients as a function of the mole fraction of hydrogen $(x_{\rm H_2})$. Lines are colored as per the legend in subfigure (b). The dashed lines act as guides to the eye.

173 S6.4 Effect of H_2 mole fraction on the Fick diffusion coefficients

174

of H₂-CO₂ mixtures

Figure S29: Ratio of the Fick diffusion coefficients, computed from MD simulations, at a given pressure and temperature with respect to the corresponding value at a reference hydrogen mole fraction $x_{\rm H_2}^0 = 0.1$.

175 S6.5 Effect of temperature on the Fick diffusion coefficients of H_2 -CO₂ mixtures

Figure S30: The ratio of Fick diffusion coefficients at a particular mole fraction of H_2 and temperature compared to their values at $T_0 = 323.15$ K.

Figure S31: Principle of corresponding states applied to the product of the computed Fick diffusivity and the corresponding mixture density. Here, the reference density ρ_0 for a mixture is calculated at 0.1 MPa and 298.15 K using the ideal-gas equation of state. The black dashed line at unity is plotted to identify the corresponding states.

$_{177}$ S7 Phase equilibria of CO₂-NaCl brine systems

$_{178}$ S7.1 Effect of pressure on the solubility of CO₂

Figure S32: CO₂ solubilities, computed from MC simulations, in NaCl brine compared to the corresponding solubility at 5 MPa $(x_{CO_2}^{p^0})$, at (a) 323.15 K and (b) 423.15 K.

¹⁷⁹ S7.2 Effect of temperature on the solubility of CO_2

Figure S33: CO₂ solubilities, computed from MC simulations, in NaCl brine at $T_1 = 423.15$ K compared to the corresponding solubility at $T_0 = 323.15$ K. The dashed line is an indicator to identify the regime in which the solubility does not depend on the temperature.

 $_{180}$ S7.3 Effect of NaCl concentration on the solubility of CO₂

Figure S34: CO₂ solubilities, computed from MC simulations, in NaCl brine compared to the corresponding solubilities in pure H₂O ($x_{CO_2}^{c_0}$), at (a) 323.15 K and (b) 423.15 K. Subfigures (c) and (d) depict the natural logarithm of the ratio between the solubilities of CO₂ and its solubility in pure water at the same pressure and temperature computed from MC simulations, plotted as a function of the NaCl concentration in brine. Linear fits to the data points, indicated by dashed lines, reveal consistent slopes of ca. -0.23 and ca -0.21 for all lines in subfigures (c) and (d), respectively.

$_{181}$ S8 Phase equilibria of H₂-NaCl brine systems

$_{182}$ S8.1 Effect of pressure on the solubility of H₂

Figure S35: H₂ solubilities, computed from MC simulations, in NaCl brine compared to the corresponding solubility at 5 MPa $(x_{H_2}^{p^0})$, at (a) 323.15 K and (b) 423.15 K.

183 S8.2 Effect of temperature on the solubility of H_2

Figure S36: H₂ solubilities, computed from MC simulations, in NaCl brine at $T_1 = 423.15$ K compared to the corresponding solubilities at $T_0 = 323.15$ K.

 $_{184}$ S8.3 Effect of NaCl concentration on the solubility of H₂

Figure S37: H₂ solubilities, computed from MC simulations, in NaCl brine compared to the corresponding solubilities in pure H₂O $(x_{H_2}^0)$, at (a) 323.15 K and (b) 423.15 K. Subfigures (c) and (d) depict the natural logarithm of the ratio between the solubilities of CO₂ and its solubility in pure water at the same pressure and temperature computed from MC simulations, plotted as a function of the NaCl concentration in brine. Linear fits to the data points, indicated by dashed lines, reveal slopes between -0.11 and -0.16 in subfigure (c) and slopes between -0.11 and -0.19 subfigure (d).

¹⁸⁵ S9 Force field parameters

Table S1: Interaction parameters of the TraPPE force field of carbon dioxide $O=C=O^{18}$, and the three-site Marx force field for hydrogen^{19–21}. Each row contains the LJ and the electrostatic interaction parameters for the atom highlighted between brackets []. Parameters between different species are calculated using the Lorentz-Berthelot mixing rules^{5,6}, except between Na⁺ and Cl⁻ ions^{22,23}, Na⁺ ions and the oxygen atom in water (Ow), and Cl⁻ ions and oxygen atoms in water (Ow)^{22,23}.

Atom	$\varepsilon/k_B / [K]$	σ / [Å]	$q \neq [e]$
O=[C]=O	27.0	2.80	0.70
[O]=C=O	79.0	3.05	-0.35
H-[L]-H	36.7	2.958	-0.936
[H]-L-H	-	-	0.468
М-[О]-Н	79.86	3.1589	0
М-О-[H]	-	-	0.53136
[M] H- O -H	-	-	-1.06272
[Na ⁺]Cl ⁻	177.0848	2.21737	0.85
Na ⁺ [Cl ⁻]	9.251769	4.69906	-0.85
[Na ⁺][Cl ⁻]	173.06027	3.00512	-
[Na ⁺][Ow]	95.423247	2.60738	-
[Cl ⁻][Ow]	7.4548886	4.23867	-

186 S10 Raw simulation data

S10.1 Densities, compressibilities and total energies from MD simulations ulations

Table S2: Densities (ρ) and compressibilities (Z) obtained from MD simulations of CO₂-H₂ mixtures comprising 2000 molecules are presented as functions of pressure, temperature, and mole fraction of H₂. The average box length L of the cubic simulation box is reported in units of angstrom (Å). Densities and compressibilities from the REFPROP database³ are included for comparison. Total energies (E_{tot}) calculated for the systems in the NVE ensemble are also included.

p	Т	x_{H_2}	L	ho / [kg/m	1 ³]		Ζ	$E_{\rm tot}$	
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]	
5	323.15	0.0	112.66 ± 0.13	102.22 ± 0.34	104.84	0.80	0.78	5.38	
5	323.15	0.1	114.94 ± 0.06	87.06 ± 0.14	89.25	0.85	0.81	5.65	
5	323.15	0.2	116.75 ± 0.02	74.31 ± 0.03	75.97	0.89	0.83	5.87	
5	323.15	0.3	118.08 ± 0.04	63.37 ± 0.06	64.37	0.92	0.85	6.06	
5	323.15	0.4	119.21 ± 0.06	53.35 ± 0.08	53.98	0.95	0.87	6.21	
5	323.15	0.5	120.14 ± 0.04	44.08 ± 0.04	44.47	0.97	0.89	6.34	
5	323.15	0.6	120.88 ± 0.02	35.38 ± 0.02	35.61	0.99	0.91	6.44	
5	323.15	0.7	121.54 ± 0.05	27.03 ± 0.03	27.21	1.01	0.92	6.52	
5	323.15	0.8	121.85 ± 0.04	19.12 ± 0.02	19.14	1.01	0.94	6.59	
5	323.15	0.9	122.20 ± 0.07	11.31 ± 0.02	11.32	1.02	0.95	6.65	
5	323.15	1.0	122.34 ± 0.01	3.66 ± 0.01	3.65	1.03	0.96	6.68	
5	348.15	0.0	118.11 ± 0.02	88.71 ± 0.04	90.46	0.86	0.97	6.13	
5	348.15	0.1	119.67 ± 0.04	77.14 ± 0.09	78.68	0.89	0.98	6.35	
5	348.15	0.2	120.98 ± 0.06	66.80 ± 0.11	67.99	0.92	0.99	6.52	
	Continued on next page								

p	Т	x_{H_2}	L	ho / [kg/m	1 ³]		Ζ	$E_{\rm tot}$
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]
5	348.15	0.3	121.97 ± 0.02	57.49 ± 0.03	58.23	0.94	1.00	6.67
5	348.15	0.4	122.89 ± 0.01	48.70 ± 0.01	49.21	0.97	1.01	6.79
5	348.15	0.5	123.60 ± 0.05	40.47 ± 0.05	40.78	0.98	1.01	6.91
5	348.15	0.6	124.27 ± 0.03	32.56 ± 0.02	32.79	1.00	1.02	7.00
5	348.15	0.7	124.73 ± 0.02	25.01 ± 0.01	25.14	1.01	1.02	7.07
5	348.15	0.8	125.04 ± 0.03	17.69 ± 0.02	17.73	1.02	1.03	7.13
5	348.15	0.9	125.22 ± 0.04	10.51 ± 0.01	10.50	1.02	1.03	7.17
5	348.15	1.0	125.40 ± 0.03	3.40 ± 0.01	3.39	1.03	0.84	7.21
5	373.15	0.0	122.54 ± 0.03	79.44 ± 0.05	80.65	0.89	0.86	6.82
5	373.15	0.1	123.74 ± 0.06	69.78 ± 0.11	70.94	0.92	0.87	6.99
5	373.15	0.2	124.74 ± 0.04	60.94 ± 0.06	61.85	0.94	0.89	7.14
5	373.15	0.3	125.61 ± 0.09	52.64 ± 0.12	53.34	0.96	0.90	7.26
5	373.15	0.4	126.28 ± 0.01	44.88 ± 0.01	45.32	0.98	0.92	7.37
5	373.15	0.5	126.84 ± 0.03	37.46 ± 0.03	37.71	0.99	0.93	7.46
5	373.15	0.6	127.36 ± 0.07	30.25 ± 0.05	30.42	1.00	0.94	7.54
5	373.15	0.7	127.74 ± 0.01	23.29 ± 0.01	23.38	1.01	0.96	7.61
5	373.15	0.8	128.05 ± 0.02	16.47 ± 0.01	16.53	1.02	0.97	7.66
5	373.15	0.9	128.18 ± 0.03	9.80 ± 0.01	9.80	1.02	0.97	7.70
5	373.15	1.0	128.26 ± 0.04	3.17 ± 0.01	3.17	1.02	0.98	7.73
5	398.15	0.0	126.45 ± 0.01	72.29 ± 0.01	73.28	0.92	0.99	7.47
5	398.15	0.1	127.33 ± 0.03	64.04 ± 0.05	64.91	0.94	1.00	7.60
5	398.15	0.2	128.17 ± 0.05	56.17 ± 0.07	56.92	0.96	1.00	7.73
5	398.15	0.3	128.81 ± 0.03	48.81 ± 0.03	49.32	0.97	1.01	7.83
			Contin	ued on next pag	ge			

p	Т	x_{H_2}	L	ho / [kg/m	1 ³]		Ζ	$E_{\rm tot}$		
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]		
5	398.15	0.4	129.41 ± 0.02	41.70 ± 0.02	42.07	0.99	1.01	7.93		
5	398.15	0.5	129.88 ± 0.08	34.88 ± 0.06	35.11	1.00	1.02	8.01		
5	398.15	0.6	130.29 ± 0.02	28.25 ± 0.01	28.39	1.01	1.02	8.08		
5	398.15	0.7	130.61 ± 0.02	21.78 ± 0.01	21.86	1.01	1.02	8.14		
5	398.15	0.8	130.82 ± 0.06	15.45 ± 0.02	15.47	1.02	1.03	8.19		
5	398.15	0.9	130.96 ± 0.01	9.19 ± 0.01	9.19	1.02	0.88	8.23		
5	398.15	1.0	131.03 ± 0.02	2.98 ± 0.01	2.97	1.02	0.89	8.25		
5	423.15	0.0	129.83 ± 0.02	66.79 ± 0.03	67.43	0.94	0.90	8.07		
5	423.15	0.1	130.59 ± 0.01	59.37 ± 0.02	60.00	0.95	0.92	8.20		
5	423.15	0.2	131.33 ± 0.05	52.21 ± 0.06	52.83	0.97	0.93	8.30		
5	423.15	0.3	131.79 ± 0.03	45.57 ± 0.03	45.93	0.98	0.94	8.40		
5	423.15	0.4	132.31 ± 0.02	39.02 ± 0.02	39.29	0.99	0.95	8.48		
5	423.15	0.5	132.80 ± 0.08	32.63 ± 0.06	32.87	1.00	0.96	8.56		
5	423.15	0.6	133.08 ± 0.03	26.51 ± 0.02	26.63	1.01	0.97	8.62		
5	423.15	0.7	133.33 ± 0.03	20.48 ± 0.02	20.54	1.01	0.98	8.67		
5	423.15	0.8	133.48 ± 0.03	14.54 ± 0.01	14.55	1.02	0.98	8.72		
5	423.15	0.9	133.65 ± 0.02	8.65 ± 0.01	8.65	1.02	0.99	8.75		
5	423.15	1.0	133.68 ± 0.01	2.80 ± 0.01	2.80	1.02	1.00	8.77		
10	323.15	0.0	73.37 ± 0.32	369.98 ± 4.89	384.33	0.44	1.00	2.23		
10	323.15	0.1	84.18 ± 0.05	221.63 ± 0.43	235.85	0.67	1.01	4.10		
10	323.15	0.2	88.43 ± 0.06	171.04 ± 0.33	178.75	0.77	1.01	4.82		
10	323.15	0.3	91.20 ± 0.02	137.51 ± 0.09	142.02	0.85	1.02	5.31		
10	323.15	0.4	93.19 ± 0.05	111.66 ± 0.18	114.31	0.91	1.02	5.66		
	Continued on next page									

p	Т	x_{H_2}	L	ρ / [kg/m	1 ³]		Ζ	$E_{\rm tot}$	
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]	
10	323.15	0.5	94.67 ± 0.01	90.09 ± 0.04	91.58	0.95	1.02	5.95	
10	323.15	0.6	95.80 ± 0.02	71.06 ± 0.05	71.87	0.99	1.02	6.17	
10	323.15	0.7	96.64 ± 0.02	53.78 ± 0.04	54.13	1.01	1.03	6.34	
10	323.15	0.8	97.34 ± 0.04	37.50 ± 0.04	37.69	1.03	0.91	6.48	
10	323.15	0.9	97.74 ± 0.01	22.11 ± 0.01	22.11	1.05	0.92	6.58	
10	323.15	1.0	98.03 ± 0.02	7.11 ± 0.01	7.10	1.06	0.93	6.65	
10	348.15	0.0	86.71 ± 0.18	224.16 ± 1.40	233.43	0.68	0.94	4.55	
10	348.15	0.1	90.64 ± 0.06	177.55 ± 0.38	185.28	0.77	0.95	5.24	
10	348.15	0.2	93.20 ± 0.08	146.10 ± 0.37	151.15	0.84	0.95	5.70	
10	348.15	0.3	95.11 ± 0.04	121.25 ± 0.14	124.46	0.90	0.96	6.06	
10	348.15	0.4	96.61 ± 0.03	100.22 ± 0.10	102.29	0.94	0.97	6.34	
10	348.15	0.5	97.72 ± 0.04	81.91 ± 0.10	83.05	0.97	0.98	6.57	
10	348.15	0.6	98.61 ± 0.04	65.16 ± 0.08	65.78	1.00	0.98	6.75	
10	348.15	0.7	99.29 ± 0.02	49.58 ± 0.03	49.86	1.02	0.99	6.90	
10	348.15	0.8	99.81 ± 0.04	34.78 ± 0.04	34.88	1.03	1.00	7.02	
10	348.15	0.9	100.21 ± 0.03	20.51 ± 0.02	20.53	1.05	1.00	7.11	
10	348.15	1.0	100.39 ± 0.03	6.62 ± 0.01	6.61	1.05	1.01	7.18	
10	373.15	0.0	92.73 ± 0.08	183.33 ± 0.47	188.57	0.77	1.01	5.65	
10	373.15	0.1	95.29 ± 0.07	152.81 ± 0.33	158.17	0.84	1.01	6.11	
10	373.15	0.2	97.04 ± 0.07	129.41 ± 0.26	133.09	0.89	1.02	6.45	
10	373.15	0.3	98.44 ± 0.07	109.35 ± 0.24	111.73	0.93	1.02	6.74	
10	373.15	0.4	99.66 ± 0.04	91.30 ± 0.10	93.02	0.96	1.02	6.97	
10	373.15	0.5	100.56 ± 0.02	75.16 ± 0.05	76.20	0.99	1.02	7.17	
	Continued on next page								

p	Т	x_{H_2}	L	ho / [kg/m	n^3]		Ζ	$E_{\rm tot}$
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]
10	373.15	0.6	101.30 ± 0.03	60.10 ± 0.05	60.74	1.01	1.02	7.33
10	373.15	0.7	101.85 ± 0.02	45.94 ± 0.03	46.26	1.03	0.93	7.46
10	373.15	0.8	102.27 ± 0.04	32.34 ± 0.04	32.48	1.04	0.94	7.57
10	373.15	0.9	102.53 ± 0.03	19.15 ± 0.02	19.17	1.05	0.94	7.65
10	373.15	1.0	102.64 ± 0.02	6.19 ± 0.01	6.18	1.05	0.95	7.70
10	398.15	0.0	97.09 ± 0.05	159.68 ± 0.23	163.03	0.83	0.96	6.51
10	398.15	0.1	98.95 ± 0.04	136.47 ± 0.14	140.13	0.88	0.97	6.86
10	398.15	0.2	100.29 ± 0.04	117.23 ± 0.16	119.91	0.92	0.97	7.14
10	398.15	0.3	101.53 ± 0.05	99.68 ± 0.14	101.88	0.95	0.98	7.39
10	398.15	0.4	102.40 ± 0.03	84.17 ± 0.07	85.56	0.98	0.98	7.59
10	398.15	0.5	103.14 ± 0.01	69.66 ± 0.02	70.54	1.00	0.99	7.75
10	398.15	0.6	103.69 ± 0.02	56.05 ± 0.04	56.50	1.01	0.99	7.89
10	398.15	0.7	104.17 ± 0.02	42.94 ± 0.03	43.19	1.03	1.00	8.01
10	398.15	0.8	104.47 ± 0.04	30.33 ± 0.04	30.40	1.04	1.00	8.10
10	398.15	0.9	104.78 ± 0.02	17.95 ± 0.01	17.99	1.05	1.01	8.18
10	398.15	1.0	104.80 ± 0.03	5.82 ± 0.01	5.81	1.05	1.01	8.23
10	423.15	0.0	100.76 ± 0.02	142.88 ± 0.07	145.56	0.88	1.01	7.26
10	423.15	0.1	102.18 ± 0.04	123.95 ± 0.14	126.84	0.91	1.02	7.55
10	423.15	0.2	103.19 ± 0.07	107.64 ± 0.22	109.69	0.94	1.02	7.79
10	423.15	0.3	104.17 ± 0.05	92.29 ± 0.13	93.95	0.97	1.02	8.00
10	423.15	0.4	104.93 ± 0.05	78.22 ± 0.12	79.38	0.99	1.02	8.17
10	423.15	0.5	105.52 ± 0.01	65.05 ± 0.03	65.76	1.01	1.02	8.32
10	423.15	0.6	106.03 ± 0.02	52.42 ± 0.03	52.86	1.02	0.75	8.45
	Continued on next page							

p	Т	x_{H_2}	L	ho / [kg/m	n^3]		Ζ	$E_{\rm tot}$	
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]	
10	423.15	0.7	106.40 ± 0.03	40.30 ± 0.03	40.52	1.03	0.78	8.55	
10	423.15	0.8	106.66 ± 0.02	28.51 ± 0.02	28.59	1.04	0.81	8.64	
10	423.15	0.9	106.87 ± 0.02	16.91 ± 0.01	16.94	1.04	0.84	8.70	
10	423.15	1.0	106.88 ± 0.01	5.48 ± 0.01	5.48	1.04	0.86	8.75	
15	323.15	0.0	59.13 ± 0.04	707.13 ± 1.36	699.76	0.35	0.88	-1.16	
15	323.15	0.1	67.13 ± 0.05	437.04 ± 0.97	456.58	0.51	0.90	1.91	
15	323.15	0.2	73.93 ± 0.04	292.72 ± 0.53	309.70	0.68	0.92	3.61	
15	323.15	0.3	77.88 ± 0.04	220.86 ± 0.37	230.33	0.79	0.93	4.50	
15	323.15	0.4	80.43 ± 0.03	173.67 ± 0.17	178.43	0.87	0.95	5.12	
15	323.15	0.5	82.35 ± 0.03	136.85 ± 0.17	139.54	0.94	0.96	5.56	
15	323.15	0.6	83.81 ± 0.02	106.15 ± 0.09	107.77	0.99	0.97	5.90	
15	323.15	0.7	84.79 ± 0.01	79.61 ± 0.04	80.26	1.02	0.98	6.17	
15	323.15	0.8	85.55 ± 0.02	55.25 ± 0.03	55.45	1.05	0.99	6.37	
15	323.15	0.9	86.01 ± 0.01	32.45 ± 0.01	32.37	1.07	1.00	6.51	
15	323.15	1.0	86.36 ± 0.03	10.40 ± 0.01	10.36	1.08	1.01	6.62	
15	348.15	0.0	68.65 ± 0.02	451.71 ± 0.47	463.34	0.50	1.01	2.16	
15	348.15	0.1	75.39 ± 0.08	308.56 ± 1.02	325.46	0.67	1.02	3.88	
15	348.15	0.2	79.30 ± 0.06	237.18 ± 0.52	248.25	0.78	1.02	4.80	
15	348.15	0.3	81.94 ± 0.04	189.59 ± 0.29	196.44	0.86	1.03	5.43	
15	348.15	0.4	83.86 ± 0.03	153.22 ± 0.14	157.36	0.92	1.03	5.89	
15	348.15	0.5	85.29 ± 0.03	123.18 ± 0.12	125.55	0.97	0.82	6.24	
15	348.15	0.6	86.40 ± 0.02	96.86 ± 0.06	98.22	1.01	0.84	6.53	
15	348.15	0.7	87.24 ± 0.05	73.10 ± 0.12	73.80	1.04	0.86	6.75	
	Continued on next page								

p	Т	x_{H_2}	L	ρ / [kg/m	1 ³]		Ζ	$E_{\rm tot}$	
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]	
15	348.15	0.8	87.80 ± 0.02	51.11 ± 0.04	51.30	1.06	0.88	6.93	
15	348.15	0.9	88.20 ± 0.01	30.09 ± 0.01	30.08	1.07	0.90	7.06	
15	348.15	1.0	88.42 ± 0.01	9.69 ± 0.01	9.66	1.08	0.91	7.15	
15	373.15	0.0	76.99 ± 0.08	320.29 ± 1.04	332.35	0.66	0.93	4.19	
15	373.15	0.1	80.78 ± 0.02	250.81 ± 0.15	261.96	0.77	0.94	5.11	
15	373.15	0.2	83.41 ± 0.05	203.82 ± 0.40	211.96	0.84	0.95	5.74	
15	373.15	0.3	85.29 ± 0.07	168.14 ± 0.44	173.34	0.90	0.96	6.22	
15	373.15	0.4	86.74 ± 0.03	138.50 ± 0.13	141.69	0.95	0.97	6.58	
15	373.15	0.5	87.88 ± 0.06	112.60 ± 0.22	114.56	0.99	0.98	6.88	
15	373.15	0.6	88.73 ± 0.04	89.44 ± 0.11	90.44	1.02	0.99	7.13	
15	373.15	0.7	89.44 ± 0.02	67.83 ± 0.05	68.40	1.04	1.00	7.32	
15	373.15	0.8	89.91 ± 0.03	47.59 ± 0.05	47.78	1.06	1.00	7.48	
15	373.15	0.9	90.23 ± 0.03	28.10 ± 0.03	28.11	1.07	1.01	7.60	
15	373.15	1.0	90.37 ± 0.01	9.07 ± 0.01	9.05	1.07	1.02	7.68	
15	398.15	0.0	82.26 ± 0.11	262.54 ± 1.10	270.74	0.76	1.02	5.43	
15	398.15	0.1	84.87 ± 0.03	216.27 ± 0.24	224.58	0.83	1.02	6.06	
15	398.15	0.2	86.74 ± 0.02	181.23 ± 0.11	187.35	0.89	1.03	6.55	
15	398.15	0.3	88.13 ± 0.04	152.40 ± 0.21	156.25	0.93	1.03	6.93	
15	398.15	0.4	89.35 ± 0.02	126.69 ± 0.07	129.43	0.97	0.87	7.25	
15	398.15	0.5	90.26 ± 0.06	103.92 ± 0.21	105.62	1.00	0.88	7.50	
15	398.15	0.6	90.98 ± 0.02	82.96 ± 0.06	83.95	1.03	0.89	7.71	
15	398.15	0.7	91.51 ± 0.02	63.34 ± 0.03	63.80	1.05	0.91	7.88	
15	398.15	0.8	91.90 ± 0.01	44.56 ± 0.01	44.73	1.06	0.92	8.02	
	Continued on next page								

p	Т	x_{H_2}	L	ρ / [kg/m	1 ³]		Ζ	$E_{\rm tot}$	
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]	
15	398.15	0.9	92.14 ± 0.02	26.39 ± 0.02	26.39	1.07	0.93	8.13	
15	398.15	1.0	92.24 ± 0.04	8.53 ± 0.01	8.52	1.07	0.94	8.21	
15	423.15	0.0	86.28 ± 0.04	227.57 ± 0.29	233.93	0.82	0.95	6.39	
15	423.15	0.1	88.10 ± 0.03	193.34 ± 0.18	199.18	0.88	0.96	6.88	
15	423.15	0.2	89.55 ± 0.03	164.68 ± 0.18	169.18	0.92	0.97	7.27	
15	423.15	0.3	90.73 ± 0.02	139.66 ± 0.09	142.91	0.96	0.98	7.60	
15	423.15	0.4	91.66 ± 0.02	117.36 ± 0.08	119.47	0.99	0.99	7.87	
15	423.15	0.5	92.41 ± 0.02	96.85 ± 0.06	98.16	1.01	1.00	8.10	
15	423.15	0.6	93.03 ± 0.02	77.60 ± 0.04	78.42	1.03	1.00	8.28	
15	423.15	0.7	93.47 ± 0.01	59.44 ± 0.02	59.83	1.05	1.01	8.44	
15	423.15	0.8	93.81 ± 0.03	41.89 ± 0.04	42.07	1.06	1.01	8.57	
15	423.15	0.9	93.98 ± 0.02	24.87 ± 0.01	24.88	1.07	1.02	8.66	
15	423.15	1.0	94.07 ± 0.01	8.04 ± 0.01	8.04	1.07	1.02	8.73	
20	323.15	0.0	57.20 ± 0.02	781.16 ± 0.72	784.30	0.42	1.02	-1.94	
20	323.15	0.1	60.90 ± 0.04	585.22 ± 1.09	589.51	0.51	1.03	0.51	
20	323.15	0.2	65.84 ± 0.02	414.30 ± 0.41	427.97	0.64	1.03	2.46	
20	323.15	0.3	69.88 ± 0.02	305.73 ± 0.23	316.48	0.76	0.90	3.73	
20	323.15	0.4	72.72 ± 0.06	235.05 ± 0.61	241.10	0.86	0.91	4.58	
20	323.15	0.5	74.80 ± 0.02	182.64 ± 0.13	185.99	0.94	0.92	5.19	
20	323.15	0.6	76.31 ± 0.02	140.62 ± 0.12	142.21	1.00	0.93	5.65	
20	323.15	0.7	77.49 ± 0.02	104.32 ± 0.09	105.17	1.04	0.94	6.00	
20	323.15	0.8	78.31 ± 0.01	72.02 ± 0.03	72.30	1.08	0.95	6.26	
20	323.15	0.9	78.83 ± 0.02	42.14 ± 0.03	42.06	1.10	0.96	6.46	
	Continued on next page								

p	Т	x_{H_2}	L	ρ / [kg/m	1 ³]		Ζ	$E_{\rm tot}$
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]
20	323.15	1.0	79.10 ± 0.03	13.53 ± 0.02	13.45	1.11	0.97	6.59
20	348.15	0.0	61.75 ± 0.08	620.72 ± 2.37	626.22	0.49	0.98	0.47
20	348.15	0.1	66.82 ± 0.07	443.10 ± 1.43	459.29	0.62	0.98	2.58
20	348.15	0.2	70.92 ± 0.07	331.49 ± 0.98	345.44	0.74	0.99	3.92
20	348.15	0.3	73.88 ± 0.10	258.72 ± 1.05	268.02	0.84	1.00	4.81
20	348.15	0.4	75.99 ± 0.02	205.96 ± 0.18	211.39	0.91	1.00	5.45
20	348.15	0.5	77.58 ± 0.03	163.66 ± 0.17	166.77	0.97	1.01	5.92
20	348.15	0.6	78.77 ± 0.01	127.83 ± 0.03	129.41	1.02	1.01	6.31
20	348.15	0.7	79.67 ± 0.01	95.96 ± 0.01	96.68	1.05	1.01	6.60
20	348.15	0.8	80.35 ± 0.01	66.67 ± 0.02	66.93	1.08	1.02	6.83
20	348.15	0.9	80.78 ± 0.03	39.16 ± 0.05	39.14	1.10	1.02	7.01
20	348.15	1.0	81.00 ± 0.03	12.60 ± 0.01	12.56	1.11	1.02	7.12
20	373.15	0.0	67.85 ± 0.06	467.88 ± 1.15	480.55	0.61	1.03	2.71
20	373.15	0.1	71.97 ± 0.05	354.59 ± 0.67	369.17	0.72	1.03	4.11
20	373.15	0.2	74.91 ± 0.01	281.37 ± 0.12	291.90	0.82	0.92	5.02
20	373.15	0.3	77.14 ± 0.04	227.24 ± 0.35	234.64	0.89	0.93	5.70
20	373.15	0.4	78.77 ± 0.03	184.91 ± 0.25	189.41	0.95	0.94	6.20
20	373.15	0.5	80.01 ± 0.02	149.24 ± 0.11	151.76	0.99	0.95	6.61
20	373.15	0.6	81.01 ± 0.02	117.54 ± 0.08	119.02	1.03	0.95	6.93
20	373.15	0.7	81.74 ± 0.05	88.88 ± 0.16	89.59	1.06	0.96	7.19
20	373.15	0.8	82.27 ± 0.02	62.12 ± 0.03	62.37	1.08	0.97	7.40
20	373.15	0.9	82.62 ± 0.02	36.60 ± 0.03	36.62	1.09	0.98	7.55
20	373.15	1.0	82.77 ± 0.02	11.81 ± 0.01	11.79	1.10	0.98	7.66
	Continued on next page							

p	Т	x_{H_2}	L	ρ / [kg/m	1 ³]		Ζ	$E_{\rm tot}$	
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]	
20	398.15	0.0	73.04 ± 0.01	375.14 ± 0.15	385.81	0.71	0.99	4.29	
20	398.15	0.1	76.04 ± 0.01	300.72 ± 0.08	311.92	0.80	0.99	5.26	
20	398.15	0.2	78.29 ± 0.07	246.42 ± 0.66	255.41	0.87	1.00	5.96	
20	398.15	0.3	79.97 ± 0.02	203.99 ± 0.18	210.16	0.93	1.00	6.48	
20	398.15	0.4	81.25 ± 0.01	168.46 ± 0.07	172.36	0.98	1.01	6.91	
20	398.15	0.5	82.26 ± 0.02	137.28 ± 0.11	139.63	1.01	1.01	7.26	
20	398.15	0.6	83.06 ± 0.03	109.03 ± 0.13	110.38	1.04	1.02	7.54	
20	398.15	0.7	83.63 ± 0.02	82.97 ± 0.07	83.56	1.06	1.02	7.77	
20	398.15	0.8	84.08 ± 0.02	58.20 ± 0.05	58.42	1.08	1.02	7.95	
20	398.15	0.9	84.33 ± 0.01	34.42 ± 0.01	34.42	1.09	1.02	8.08	
20	398.15	1.0	84.43 ± 0.03	11.12 ± 0.01	11.11	1.09	1.02	8.19	
20	423.15	0.0	77.21 ± 0.02	317.52 ± 0.20	327.10	0.79	1.02	5.49	
20	423.15	0.1	79.40 ± 0.01	264.10 ± 0.12	273.25	0.86	0.73	6.21	
20	423.15	0.2	81.07 ± 0.03	221.98 ± 0.27	228.84	0.91	0.76	6.76	
20	423.15	0.3	82.44 ± 0.03	186.20 ± 0.23	191.27	0.96	0.79	7.21	
20	423.15	0.4	83.48 ± 0.04	155.35 ± 0.21	158.64	1.00	0.82	7.58	
20	423.15	0.5	84.32 ± 0.04	127.48 ± 0.18	129.57	1.03	0.85	7.88	
20	423.15	0.6	84.97 ± 0.02	101.85 ± 0.08	103.05	1.05	0.87	8.13	
20	423.15	0.7	85.43 ± 0.02	77.85 ± 0.07	78.37	1.07	0.89	8.33	
20	423.15	0.8	85.78 ± 0.02	54.79 ± 0.04	54.98	1.08	0.91	8.49	
20	423.15	0.9	85.99 ± 0.03	32.47 ± 0.03	32.47	1.09	0.93	8.62	
20	423.15	1.0	86.09 ± 0.01	10.50 ± 0.01	10.50	1.09	0.94	8.72	
25	323.15	0.0	56.08 ± 0.03	828.89 ± 1.24	834.21	0.49	0.96	-2.45	
	Continued on next page								

p	Т	x_{H_2}	L	ρ / [kg/m	n^3]		Ζ	$E_{\rm tot}$	
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]	
25	323.15	0.1	58.28 ± 0.02	667.96 ± 0.53	660.61	0.55	0.97	-0.28	
25	323.15	0.2	61.61 ± 0.02	505.83 ± 0.38	508.88	0.66	0.98	1.64	
25	323.15	0.3	64.90 ± 0.04	381.66 ± 0.64	387.88	0.77	0.99	3.08	
25	323.15	0.4	67.64 ± 0.03	292.10 ± 0.45	297.32	0.87	1.00	4.10	
25	323.15	0.5	69.69 ± 0.01	225.83 ± 0.14	228.86	0.95	1.01	4.85	
25	323.15	0.6	71.27 ± 0.01	172.58 ± 0.10	174.38	1.01	1.02	5.42	
25	323.15	0.7	72.43 ± 0.02	127.74 ± 0.10	128.55	1.06	1.02	5.84	
25	323.15	0.8	73.23 ± 0.03	88.09 ± 0.11	88.16	1.10	1.03	6.16	
25	323.15	0.9	73.80 ± 0.02	51.36 ± 0.04	51.21	1.13	1.03	6.40	
25	323.15	1.0	74.09 ± 0.01	16.46 ± 0.01	16.38	1.14	1.03	6.56	
25	348.15	0.0	59.24 ± 0.02	703.21 ± 0.67	711.60	0.54	0.80	-0.37	
25	348.15	0.1	62.44 ± 0.02	543.13 ± 0.46	551.93	0.63	0.83	1.64	
25	348.15	0.2	65.79 ± 0.04	415.37 ± 0.75	426.44	0.74	0.85	3.16	
25	348.15	0.3	68.49 ± 0.03	324.69 ± 0.41	332.46	0.84	0.87	4.24	
25	348.15	0.4	70.67 ± 0.01	256.10 ± 0.08	261.47	0.92	0.89	5.03	
25	348.15	0.5	72.27 ± 0.02	202.45 ± 0.18	205.40	0.98	0.90	5.63	
25	348.15	0.6	73.58 ± 0.01	156.84 ± 0.08	158.79	1.04	0.92	6.11	
25	348.15	0.7	74.50 ± 0.01	117.40 ± 0.05	118.27	1.08	0.93	6.46	
25	348.15	0.8	75.17 ± 0.01	81.45 ± 0.04	81.71	1.10	0.95	6.74	
25	348.15	0.9	75.61 ± 0.02	47.76 ± 0.04	47.73	1.12	0.96	6.95	
25	348.15	1.0	75.81 ± 0.05	15.37 ± 0.03	15.32	1.13	0.97	7.10	
25	373.15	0.0	63.31 ± 0.03	576.06 ± 0.79	588.46	0.62	0.98	1.63	
25	373.15	0.1	66.61 ± 0.01	447.32 ± 0.23	460.40	0.72	0.99	3.23	
	Continued on next page								

p	Т	x_{H_2}	L	ρ / [kg/m	1 ³]		Ζ	$E_{\rm tot}$		
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]		
25	373.15	0.2	69.46 ± 0.02	352.87 ± 0.26	364.55	0.81	1.00	4.38		
25	373.15	0.3	71.58 ± 0.03	284.39 ± 0.42	291.79	0.89	1.01	5.21		
25	373.15	0.4	73.30 ± 0.04	229.43 ± 0.33	234.34	0.96	1.01	5.86		
25	373.15	0.5	74.63 ± 0.03	183.89 ± 0.21	186.93	1.01	1.02	6.36		
25	373.15	0.6	75.62 ± 0.03	144.48 ± 0.18	146.10	1.05	1.02	6.75		
25	373.15	0.7	76.40 ± 0.02	108.85 ± 0.08	109.68	1.08	1.03	7.07		
25	373.15	0.8	76.93 ± 0.01	75.95 ± 0.02	76.21	1.10	1.03	7.31		
25	373.15	0.9	77.28 ± 0.03	44.72 ± 0.05	44.71	1.12	1.03	7.50		
25	373.15	1.0	77.41 ± 0.02	14.43 ± 0.01	14.40	1.13	0.85	7.63		
25	398.15	0.0	67.50 ± 0.05	475.26 ± 1.15	487.81	0.70	0.87	3.30		
25	398.15	0.1	70.37 ± 0.03	379.36 ± 0.50	392.67	0.79	0.89	4.52		
25	398.15	0.2	72.61 ± 0.04	309.00 ± 0.55	319.46	0.87	0.90	5.40		
25	398.15	0.3	74.28 ± 0.04	254.49 ± 0.36	261.22	0.93	0.91	6.07		
25	398.15	0.4	75.64 ± 0.03	208.86 ± 0.27	213.13	0.98	0.93	6.59		
25	398.15	0.5	76.70 ± 0.02	169.41 ± 0.15	171.96	1.03	0.94	7.03		
25	398.15	0.6	77.54 ± 0.04	134.02 ± 0.19	135.52	1.06	0.95	7.38		
25	398.15	0.7	78.14 ± 0.02	101.72 ± 0.08	102.37	1.08	0.96	7.65		
25	398.15	0.8	78.58 ± 0.01	71.28 ± 0.02	71.46	1.10	0.97	7.88		
25	398.15	0.9	78.89 ± 0.02	42.05 ± 0.03	42.06	1.12	0.98	8.04		
25	398.15	1.0	78.97 ± 0.01	13.60 ± 0.01	13.58	1.12	0.99	8.17		
25	423.15	0.0	71.25 ± 0.06	404.06 ± 1.05	415.50	0.77	1.00	4.65		
25	423.15	0.1	73.52 ± 0.02	332.75 ± 0.21	343.87	0.85	1.00	5.57		
25	423.15	0.2	75.27 ± 0.02	277.35 ± 0.19	285.81	0.91	1.01	6.28		
	Continued on next page									

p	Т	x_{H_2}	L	ρ / [kg/m	1 ³]		Ζ	$E_{\rm tot}$		
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]		
25	423.15	0.3	76.64 ± 0.03	231.74 ± 0.30	237.46	0.96	1.01	6.84		
25	423.15	0.4	77.77 ± 0.02	192.11 ± 0.16	196.03	1.01	1.02	7.30		
25	423.15	0.5	78.63 ± 0.01	157.21 ± 0.04	159.54	1.04	1.02	7.67		
25	423.15	0.6	79.32 ± 0.01	125.21 ± 0.07	126.55	1.07	1.03	7.98		
25	423.15	0.7	79.82 ± 0.03	95.43 ± 0.09	96.05	1.09	1.03	8.23		
25	423.15	0.8	80.18 ± 0.02	67.10 ± 0.05	67.30	1.10	1.03	8.43		
25	423.15	0.9	80.40 ± 0.02	39.72 ± 0.03	39.73	1.11	0.89	8.58		
25	423.15	1.0	80.46 ± 0.02	12.85 ± 0.01	12.85	1.11	0.90	8.70		
30	323.15	0.0	55.37 ± 0.01	860.84 ± 0.21	870.43	0.57	0.91	-2.81		
30	323.15	0.1	56.85 ± 0.04	719.62 ± 1.66	707.86	0.62	0.92	-0.78		
30	323.15	0.2	59.18 ± 0.01	570.68 ± 0.35	564.61	0.70	0.93	1.08		
30	323.15	0.3	61.73 ± 0.03	443.56 ± 0.55	443.13	0.79	0.95	2.55		
30	323.15	0.4	64.04 ± 0.03	344.08 ± 0.51	345.05	0.88	0.96	3.69		
30	323.15	0.5	66.00 ± 0.01	265.79 ± 0.15	267.16	0.97	0.96	4.55		
30	323.15	0.6	67.53 ± 0.03	202.93 ± 0.30	203.82	1.04	0.97	5.20		
30	323.15	0.7	68.67 ± 0.02	149.90 ± 0.16	150.25	1.09	0.98	5.70		
30	323.15	0.8	69.49 ± 0.01	103.06 ± 0.04	103.01	1.13	0.99	6.07		
30	323.15	0.9	70.04 ± 0.01	60.06 ± 0.03	59.84	1.16	1.00	6.35		
30	323.15	1.0	70.31 ± 0.02	19.26 ± 0.01	19.15	1.17	1.00	6.54		
30	348.15	0.0	57.79 ± 0.01	757.25 ± 0.23	766.83	0.60	1.01	-0.95		
30	348.15	0.1	59.96 ± 0.03	613.18 ± 1.05	614.98	0.67	1.01	0.98		
30	348.15	0.2	62.48 ± 0.03	484.96 ± 0.67	488.55	0.76	1.02	2.54		
30	348.15	0.3	64.86 ± 0.04	382.34 ± 0.62	386.81	0.85	1.02	3.76		
	Continued on next page									

p	Т	x_{H_2}	L	ho / [kg/m ³]			Ζ	$E_{\rm tot}$	
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]	
30	348.15	0.4	66.88 ± 0.04	302.13 ± 0.51	305.97	0.93	1.02	4.67	
30	348.15	0.5	68.44 ± 0.01	238.40 ± 0.14	240.69	1.00	1.03	5.37	
30	348.15	0.6	69.66 ± 0.01	184.83 ± 0.04	186.04	1.05	1.03	5.91	
30	348.15	0.7	70.62 ± 0.01	137.79 ± 0.06	138.49	1.10	1.03	6.34	
30	348.15	0.8	71.26 ± 0.02	95.58 ± 0.08	95.63	1.13	0.91	6.66	
30	348.15	0.9	71.68 ± 0.03	56.04 ± 0.08	55.85	1.15	0.92	6.91	
30	348.15	1.0	71.90 ± 0.01	18.01 ± 0.01	17.94	1.16	0.93	7.08	
30	373.15	0.0	60.82 ± 0.03	649.67 ± 0.82	661.87	0.66	0.94	0.88	
30	373.15	0.1	63.29 ± 0.05	521.50 ± 1.20	530.51	0.74	0.95	2.53	
30	373.15	0.2	65.66 ± 0.02	417.72 ± 0.43	425.73	0.82	0.96	3.80	
30	373.15	0.3	67.73 ± 0.05	335.74 ± 0.74	342.49	0.90	0.97	4.78	
30	373.15	0.4	69.35 ± 0.03	270.93 ± 0.40	275.36	0.97	0.97	5.53	
30	373.15	0.5	70.62 ± 0.02	217.02 ± 0.17	219.53	1.03	0.98	6.11	
30	373.15	0.6	71.62 ± 0.02	170.09 ± 0.15	171.44	1.07	0.99	6.58	
30	373.15	0.7	72.39 ± 0.02	127.94 ± 0.11	128.60	1.10	0.99	6.95	
30	373.15	0.8	72.92 ± 0.01	89.22 ± 0.04	89.32	1.13	1.00	7.24	
30	373.15	0.9	73.26 ± 0.01	52.49 ± 0.01	52.39	1.14	1.01	7.46	
30	373.15	1.0	73.39 ± 0.02	16.94 ± 0.01	16.88	1.15	1.01	7.62	
30	398.15	0.0	64.16 ± 0.05	553.42 ± 1.35	567.77	0.72	1.01	2.52	
30	398.15	0.1	66.56 ± 0.03	448.30 ± 0.63	461.20	0.80	1.02	3.87	
30	398.15	0.2	68.54 ± 0.01	367.35 ± 0.19	376.41	0.88	1.02	4.88	
30	398.15	0.3	70.21 ± 0.03	301.41 ± 0.35	307.85	0.94	1.02	5.68	
30	398.15	0.4	71.53 ± 0.02	246.88 ± 0.19	250.93	1.00	1.03	6.30	
	Continued on next page								

p	Т	x_{H_2}	L	ρ / [kg/m	n^3]		Ζ	$E_{\rm tot}$		
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]		
30	398.15	0.5	72.60 ± 0.03	199.70 ± 0.26	202.22	1.04	1.03	6.81		
30	398.15	0.6	73.43 ± 0.03	157.79 ± 0.17	159.20	1.08	1.03	7.22		
30	398.15	0.7	74.07 ± 0.02	119.41 ± 0.09	120.16	1.11	0.70	7.54		
30	398.15	0.8	74.50 ± 0.02	83.66 ± 0.06	83.84	1.13	0.74	7.81		
30	398.15	0.9	74.74 ± 0.02	49.43 ± 0.04	49.35	1.14	0.77	8.01		
30	398.15	1.0	74.87 ± 0.01	15.96 ± 0.01	15.94	1.15	0.80	8.15		
30	423.15	0.0	67.35 ± 0.03	478.38 ± 0.65	491.99	0.78	0.83	3.92		
30	423.15	0.1	69.38 ± 0.01	395.89 ± 0.14	407.18	0.86	0.86	4.99		
30	423.15	0.2	71.08 ± 0.02	329.34 ± 0.28	338.00	0.92	0.88	5.83		
30	423.15	0.3	72.43 ± 0.02	274.51 ± 0.24	280.35	0.98	0.90	6.49		
30	423.15	0.4	73.55 ± 0.01	227.16 ± 0.12	231.05	1.02	0.92	7.03		
30	423.15	0.5	74.44 ± 0.01	185.26 ± 0.05	187.78	1.06	0.94	7.48		
30	423.15	0.6	75.13 ± 0.02	147.35 ± 0.10	148.79	1.09	0.95	7.84		
30	423.15	0.7	75.65 ± 0.01	112.10 ± 0.06	112.85	1.11	0.97	8.13		
30	423.15	0.8	75.98 ± 0.01	78.84 ± 0.03	79.04	1.13	0.98	8.37		
30	423.15	0.9	76.19 ± 0.04	46.68 ± 0.07	46.66	1.14	0.99	8.55		
30	423.15	1.0	76.24 ± 0.02	15.11 ± 0.01	15.11	1.14	1.00	8.68		
35	323.15	0.0	54.79 ± 0.02	888.51 ± 0.80	899.26	0.65	1.01	-3.12		
35	323.15	0.1	55.89 ± 0.01	757.42 ± 0.56	743.29	0.68	1.02	-1.16		
35	323.15	0.2	57.57 ± 0.02	619.71 ± 0.67	605.99	0.75	1.02	0.63		
35	323.15	0.3	59.54 ± 0.04	494.14 ± 0.92	486.19	0.83	1.03	2.13		
35	323.15	0.4	61.51 ± 0.02	388.28 ± 0.35	384.86	0.91	1.03	3.33		
35	323.15	0.5	63.26 ± 0.02	301.89 ± 0.34	300.73	0.99	1.04	4.28		
	Continued on next page									

p	Т	x_{H_2}	L	ho / [kg/m ³]			Ζ	$E_{\rm tot}$		
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]		
35	323.15	0.6	64.66 ± 0.01	231.07 ± 0.06	230.50	1.06	0.79	5.00		
35	323.15	0.7	65.77 ± 0.01	170.57 ± 0.08	170.28	1.12	0.81	5.56		
35	323.15	0.8	66.58 ± 0.01	117.17 ± 0.06	116.88	1.16	0.83	5.99		
35	323.15	0.9	67.09 ± 0.01	68.36 ± 0.05	67.96	1.18	0.86	6.30		
35	323.15	1.0	67.35 ± 0.02	21.92 ± 0.02	21.78	1.20	0.88	6.52		
35	348.15	0.0	56.85 ± 0.01	795.33 ± 0.39	807.54	0.67	0.90	-1.35		
35	348.15	0.1	58.41 ± 0.02	663.50 ± 0.77	661.32	0.73	0.91	0.49		
35	348.15	0.2	60.33 ± 0.03	538.57 ± 0.80	536.41	0.80	0.93	2.07		
35	348.15	0.3	62.34 ± 0.02	430.57 ± 0.49	431.57	0.88	0.94	3.35		
35	348.15	0.4	64.06 ± 0.01	343.86 ± 0.21	344.69	0.96	0.96	4.33		
35	348.15	0.5	65.54 ± 0.01	271.50 ± 0.04	272.47	1.02	0.97	5.12		
35	348.15	0.6	66.70 ± 0.03	210.51 ± 0.30	211.08	1.08	0.98	5.73		
35	348.15	0.7	67.60 ± 0.03	157.09 ± 0.18	157.31	1.12	0.99	6.21		
35	348.15	0.8	68.24 ± 0.01	108.85 ± 0.02	108.71	1.16	1.00	6.59		
35	348.15	0.9	68.66 ± 0.01	63.77 ± 0.02	63.54	1.18	1.01	6.86		
35	348.15	1.0	68.83 ± 0.01	20.53 ± 0.01	20.44	1.19	1.01	7.06		
35	373.15	0.0	59.27 ± 0.03	701.93 ± 0.89	715.25	0.71	1.02	0.34		
35	373.15	0.1	61.14 ± 0.02	578.40 ± 0.64	584.25	0.78	1.02	1.99		
35	373.15	0.2	63.09 ± 0.01	470.85 ± 0.14	475.76	0.85	1.03	3.34		
35	373.15	0.3	64.86 ± 0.01	382.41 ± 0.26	386.27	0.93	1.03	4.39		
35	373.15	0.4	66.34 ± 0.02	309.47 ± 0.22	312.04	0.99	1.03	5.23		
35	373.15	0.5	67.58 ± 0.03	247.64 ± 0.35	249.37	1.05	0.84	5.89		
35	35 373.15 0.6 68.53 \pm 0.01 194.10 \pm 0.12 194.96 1.09 0.86 6.42									
	Continued on next page									

p	Т	x_{H_2}	L	ρ / [kg/m	n^3]		Ζ	$E_{\rm tot}$		
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]		
35	373.15	0.7	69.30 ± 0.01	145.81 ± 0.03	146.34	1.13	0.88	6.84		
35	373.15	0.8	69.81 ± 0.02	101.69 ± 0.11	101.69	1.16	0.89	7.17		
35	373.15	0.9	70.12 ± 0.02	59.87 ± 0.04	59.68	1.17	0.91	7.42		
35	373.15	1.0	70.24 ± 0.03	19.32 ± 0.02	19.26	1.18	0.92	7.60		
35	398.15	0.0	61.97 ± 0.02	614.19 ± 0.62	629.17	0.76	0.94	1.92		
35	398.15	0.1	63.89 ± 0.03	506.98 ± 0.64	517.25	0.83	0.95	3.33		
35	398.15	0.2	65.64 ± 0.02	418.21 ± 0.42	425.44	0.90	0.96	4.44		
35	398.15	0.3	67.17 ± 0.02	344.23 ± 0.34	349.43	0.96	0.97	5.33		
35	398.15	0.4	68.44 ± 0.02	281.94 ± 0.26	285.43	1.02	0.98	6.04		
35	398.15	0.5	69.43 ± 0.02	228.32 ± 0.18	230.25	1.07	0.99	6.61		
35	398.15	0.6	70.25 ± 0.02	180.23 ± 0.14	181.36	1.10	1.00	7.07		
35	398.15	0.7	70.85 ± 0.01	136.48 ± 0.06	136.93	1.13	1.00	7.45		
35	398.15	0.8	71.28 ± 0.03	95.49 ± 0.11	95.58	1.15	1.01	7.75		
35	398.15	0.9	71.54 ± 0.02	56.38 ± 0.06	56.29	1.17	1.02	7.97		
35	398.15	1.0	71.62 ± 0.01	18.22 ± 0.01	18.21	1.17	1.02	8.13		
35	423.15	0.0	64.66 ± 0.04	540.61 ± 0.94	555.23	0.81	1.03	3.30		
35	423.15	0.1	66.41 ± 0.01	451.50 ± 0.12	461.84	0.88	1.03	4.48		
35	423.15	0.2	68.00 ± 0.05	376.18 ± 0.75	384.53	0.94	1.03	5.42		
35	423.15	0.3	69.29 ± 0.02	313.63 ± 0.31	319.40	1.00	1.03	6.18		
35	423.15	0.4	70.31 ± 0.01	260.04 ± 0.10	263.41	1.04	0.88	6.79		
35	423.15	0.5	71.19 ± 0.02	211.87 \pm 0.14	214.15	1.08	0.89	7.29		
35	423.15	0.6	71.84 ± 0.01	168.52 ± 0.08	169.72	1.11	0.91	7.70		
35	423.15	0.7	72.31 ± 0.01	128.36 ± 0.06	128.76	1.13	0.92	8.04		
	Continued on next page									

p	Т	x_{H_2}	L	ρ / [kg/m	n^3]		Ζ	$E_{\rm tot}$		
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]		
35	423.15	0.8	72.71 ± 0.01	89.99 ± 0.06	90.21	1.15	0.93	8.31		
35	423.15	0.9	72.86 ± 0.01	53.37 ± 0.03	53.28	1.16	0.94	8.52		
35	423.15	1.0	72.89 ± 0.04	17.29 ± 0.03	17.27	1.16	0.95	8.67		
40	323.15	0.0	54.34 ± 0.01	910.98 ± 0.22	923.33	0.72	0.96	-3.37		
40	323.15	0.1	55.17 ± 0.01	787.52 ± 0.23	771.80	0.75	0.97	-1.47		
40	323.15	0.2	56.40 ± 0.01	659.29 ± 0.45	638.61	0.80	0.98	0.28		
40	323.15	0.3	57.97 ± 0.02	535.40 ± 0.44	520.84	0.87	0.99	1.78		
40	323.15	0.4	59.63 ± 0.02	426.27 ± 0.41	418.17	0.95	1.00	3.04		
40	323.15	0.5	61.18 ± 0.01	333.79 ± 0.15	330.08	1.03	1.00	4.03		
40	323.15	0.6	62.43 ± 0.03	256.74 ± 0.40	254.52	1.09	1.01	4.83		
40	323.15	0.7	63.46 ± 0.01	189.88 ± 0.11	188.70	1.15	1.01	5.44		
40	323.15	0.8	64.23 ± 0.01	130.55 ± 0.05	129.81	1.19	1.02	5.91		
40	323.15	0.9	64.70 ± 0.01	76.22 ± 0.04	75.61	1.21	1.02	6.25		
40	323.15	1.0	64.93 ± 0.01	24.45 ± 0.01	24.28	1.23	1.03	6.50		
40	348.15	0.0	56.12 ± 0.01	827.03 ± 0.55	839.93	0.74	1.03	-1.70		
40	348.15	0.1	57.26 ± 0.01	704.14 ± 0.23	697.55	0.78	1.03	0.09		
40	348.15	0.2	58.76 ± 0.01	582.93 ± 0.35	574.58	0.84	1.03	1.67		
40	348.15	0.3	60.37 ± 0.01	474.25 ± 0.06	468.67	0.92	0.91	2.98		
40	348.15	0.4	61.93 ± 0.02	380.42 ± 0.33	378.17	0.99	0.92	4.05		
40	348.15	0.5	63.25 ± 0.02	302.03 ± 0.25	300.85	1.05	0.93	4.90		
40	348.15	0.6	64.33 ± 0.02	234.66 ± 0.20	233.98	1.11	0.94	5.57		
40	348.15	0.7	65.19 ± 0.01	175.21 ± 0.11	174.78	1.15	0.95	6.10		
40	348.15	0.8	65.80 ± 0.01	121.40 ± 0.05	120.98	1.19	0.96	6.51		
	Continued on next page									

p	Т	x_{H_2}	L	ho / [kg/m ³]			Ζ	$E_{\rm tot}$		
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]		
40	348.15	0.9	66.18 ± 0.01	71.22 ± 0.01	70.81	1.21	0.96	6.82		
40	348.15	1.0	66.33 ± 0.02	22.94 ± 0.03	22.82	1.21	0.97	7.04		
40	373.15	0.0	58.19 ± 0.01	741.73 ± 0.39	756.66	0.77	0.98	-0.08		
40	373.15	0.1	59.57 ± 0.01	625.53 ± 0.36	626.81	0.82	0.99	1.55		
40	373.15	0.2	61.14 ± 0.04	517.54 ± 1.06	516.96	0.89	0.99	2.93		
40	373.15	0.3	62.65 ± 0.01	424.31 ± 0.25	423.84	0.95	1.00	4.06		
40	373.15	0.4	64.00 ± 0.01	344.74 ± 0.22	344.61	1.02	1.01	4.96		
40	373.15	0.5	65.20 ± 0.01	275.80 ± 0.09	276.50	1.08	1.01	5.69		
40	373.15	0.6	66.10 ± 0.01	216.37 ± 0.12	216.69	1.12	1.02	6.27		
40	373.15	0.7	66.77 ± 0.01	163.01 ± 0.06	162.93	1.16	1.02	6.74		
40	373.15	0.8	67.29 ± 0.01	113.53 ± 0.06	113.36	1.18	1.02	7.10		
40	373.15	0.9	67.58 ± 0.01	66.88 ± 0.02	66.62	1.20	1.03	7.38		
40	373.15	1.0	67.69 ± 0.02	21.59 ± 0.02	21.53	1.20	1.03	7.58		
40	398.15	0.0	60.44 ± 0.03	662.11 ± 0.91	677.62	0.80	1.03	1.43		
40	398.15	0.1	61.96 ± 0.03	555.88 ± 0.91	563.19	0.87	1.03	2.87		
40	398.15	0.2	63.45 ± 0.02	463.03 ± 0.44	467.25	0.93	0.67	4.05		
40	398.15	0.3	64.81 ± 0.01	383.13 ± 0.19	386.12	0.99	0.71	5.01		
40	398.15	0.4	65.96 ± 0.01	314.87 ± 0.21	316.61	1.04	0.75	5.79		
40	398.15	0.5	66.94 ± 0.02	254.84 ± 0.19	256.02	1.09	0.79	6.42		
40	398.15	0.6	67.69 ± 0.02	201.42 ± 0.15	202.00	1.13	0.82	6.94		
40	398.15	0.7	68.28 ± 0.01	152.45 ± 0.06	152.70	1.16	0.85	7.35		
40	398.15	0.8	68.67 ± 0.01	106.81 ± 0.06	106.70	1.18	0.87	7.68		
40	398.15	0.9	68.91 ± 0.01	63.07 ± 0.01	62.91	1.19	0.90	7.94		
	Continued on next page									

p	Т	x_{H_2}	L	ρ / [kg/m	1 ³]		Ζ	$E_{\rm tot}$		
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]		
40	398.15	1.0	68.96 ± 0.01	20.41 ± 0.01	20.38	1.19	0.92	8.12		
40	423.15	0.0	62.74 ± 0.01	591.71 ± 0.12	607.12	0.85	0.93	2.80		
40	423.15	0.1	64.21 ± 0.04	499.50 ± 1.01	508.45	0.91	0.95	4.04		
40	423.15	0.2	65.61 ± 0.02	418.71 ± 0.34	425.44	0.97	0.97	5.06		
40	423.15	0.3	66.78 ± 0.03	350.23 ± 0.47	354.58	1.02	0.98	5.88		
40	423.15	0.4	67.78 ± 0.03	290.22 ± 0.34	293.10	1.07	0.99	6.56		
40	423.15	0.5	68.61 ± 0.02	236.67 ± 0.18	238.64	1.11	1.00	7.12		
40	423.15	0.6	69.20 ± 0.02	188.51 ± 0.17	189.35	1.13	1.01	7.58		
40	423.15	0.7	69.68 ± 0.01	143.46 ± 0.07	143.79	1.16	1.02	7.95		
40	423.15	0.8	70.01 ± 0.01	100.81 ± 0.05	100.83	1.17	1.03	8.25		
40	423.15	0.9	70.17 ± 0.02	59.74 ± 0.05	59.62	1.18	1.03	8.49		
40	423.15	1.0	70.20 ± 0.01	19.35 ± 0.01	19.36	1.18	1.04	8.66		
45	323.15	0.0	53.97 ± 0.01	929.81 ± 0.35	944.10	0.79	1.04	-3.58		
45	323.15	0.1	54.58 ± 0.01	813.27 ± 0.25	795.72	0.82	0.77	-1.72		
45	323.15	0.2	55.55 ± 0.01	690.02 ± 0.46	665.50	0.86	0.80	-0.00		
45	323.15	0.3	56.80 ± 0.02	569.36 ± 0.51	549.52	0.92	0.82	1.51		
45	323.15	0.4	58.19 ± 0.01	458.77 ± 0.15	446.44	0.99	0.85	2.78		
45	323.15	0.5	59.48 ± 0.03	363.21 ± 0.49	355.76	1.06	0.87	3.82		
45	323.15	0.6	60.65 ± 0.01	280.05 ± 0.16	276.17	1.13	0.89	4.66		
45	323.15	0.7	61.58 ± 0.02	207.88 ± 0.20	205.63	1.18	0.91	5.32		
45	323.15	0.8	62.29 ± 0.01	143.11 ± 0.02	141.88	1.22	0.92	5.83		
45	323.15	0.9	62.73 ± 0.01	83.61 ± 0.05	82.83	1.25	0.94	6.21		
45	323.15	1.0	62.92 ± 0.02	26.88 ± 0.03	26.66	1.26	0.95	6.48		
	Continued on next page									

p	Т	x_{H_2}	L	ρ / [kg/m	1 ³]		Ζ	$E_{\rm tot}$	
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]	
45	348.15	0.0	55.56 ± 0.02	852.22 ± 0.87	866.91	0.80	0.97	-1.98	
45	348.15	0.1	56.44 ± 0.01	735.24 ± 0.42	727.29	0.84	0.98	-0.21	
45	348.15	0.2	57.60 ± 0.01	618.98 ± 0.36	606.03	0.89	0.99	1.34	
45	348.15	0.3	58.92 ± 0.02	509.89 ± 0.60	499.92	0.96	1.00	2.69	
45	348.15	0.4	60.25 ± 0.02	413.28 ± 0.50	407.17	1.02	1.01	3.80	
45	348.15	0.5	61.42 ± 0.03	329.90 ± 0.44	326.21	1.08	1.01	4.69	
45	348.15	0.6	62.42 ± 0.01	256.88 ± 0.08	254.88	1.14	1.02	5.42	
45	348.15	0.7	63.22 ± 0.02	192.09 ± 0.17	190.99	1.18	1.03	6.00	
45	348.15	0.8	63.78 ± 0.01	133.30 ± 0.08	132.51	1.21	1.03	6.45	
45	348.15	0.9	64.12 ± 0.01	78.29 ± 0.03	77.70	1.23	1.03	6.78	
45	348.15	1.0	64.26 ± 0.01	25.23 ± 0.02	25.09	1.24	1.04	7.02	
45	373.15	0.0	57.36 ± 0.01	774.60 ± 0.08	790.38	0.82	0.83	-0.42	
45	373.15	0.1	58.43 ± 0.02	662.77 ± 0.58	661.72	0.87	0.85	1.19	
45	373.15	0.2	59.70 ± 0.01	555.92 ± 0.16	551.40	0.93	0.87	2.59	
45	373.15	0.3	61.01 ± 0.03	459.31 ± 0.57	456.17	0.99	0.88	3.76	
45	373.15	0.4	62.18 ± 0.01	375.85 ± 0.26	373.46	1.05	0.90	4.72	
45	373.15	0.5	63.22 ± 0.02	302.42 ± 0.23	301.08	1.10	0.92	5.50	
45	373.15	0.6	64.07 ± 0.03	237.55 ± 0.36	236.76	1.15	0.93	6.13	
45	373.15	0.7	64.72 ± 0.01	179.05 ± 0.03	178.42	1.18	0.94	6.63	
45	373.15	0.8	65.20 ± 0.02	124.82 ± 0.10	124.38	1.21	0.96	7.04	
45	373.15	0.9	65.44 ± 0.01	73.65 ± 0.02	73.20	1.22	0.97	7.35	
45	373.15	1.0	65.52 ± 0.03	23.80 ± 0.03	23.71	1.23	0.98	7.56	
45 398.15 0.0 59.30 \pm 0.02 701.05 \pm 0.74 717.19 0.85 0.99 1.04									
	Continued on next page								

p	Т	x_{H_2}	L	ho / [kg/m	1 ³]		Ζ	$E_{\rm tot}$	
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]	
45	398.15	0.1	60.49 ± 0.03	597.33 ± 0.74	601.45	0.91	1.00	2.48	
45	398.15	0.2	61.79 ± 0.02	501.23 ± 0.47	503.08	0.97	1.00	3.72	
45	398.15	0.3	62.97 ± 0.01	417.82 ± 0.29	418.41	1.02	1.01	4.73	
45	398.15	0.4	64.03 ± 0.01	344.28 ± 0.04	344.72	1.07	1.02	5.57	
45	398.15	0.5	64.88 ± 0.01	279.80 ± 0.15	279.70	1.12	1.02	6.25	
45	398.15	0.6	65.61 ± 0.01	221.27 ± 0.13	221.20	1.16	1.03	6.81	
45	398.15	0.7	66.14 ± 0.01	167.76 ± 0.10	167.52	1.18	1.03	7.26	
45	398.15	0.8	66.51 ± 0.01	117.55 ± 0.03	117.23	1.20	1.03	7.62	
45	398.15	0.9	66.72 ± 0.03	69.50 ± 0.09	69.22	1.22	1.04	7.90	
45	398.15	1.0	66.73 ± 0.01	22.53 ± 0.01	22.47	1.22	0.87	8.10	
45	423.15	0.0	61.35 ± 0.01	633.03 ± 0.32	650.34	0.89	0.88	2.39	
45	423.15	0.1	62.54 ± 0.01	540.49 ± 0.33	548.22	0.94	0.90	3.65	
45	423.15	0.2	63.69 ± 0.01	457.86 ± 0.07	461.30	0.99	0.91	4.73	
45	423.15	0.3	64.76 ± 0.03	384.13 ± 0.45	386.15	1.05	0.92	5.61	
45	423.15	0.4	65.70 ± 0.01	318.66 ± 0.12	320.20	1.09	0.94	6.35	
45	423.15	0.5	66.47 ± 0.01	260.26 ± 0.06	261.34	1.13	0.95	6.96	
45	423.15	0.6	67.04 ± 0.01	207.35 ± 0.10	207.73	1.16	0.96	7.46	
45	423.15	0.7	67.50 ± 0.02	157.83 ± 0.11	157.98	1.18	0.97	7.87	
45	423.15	0.8	67.78 ± 0.01	111.09 ± 0.02	110.93	1.20	0.98	8.20	
45	423.15	0.9	67.94 ± 0.01	65.81 ± 0.01	65.67	1.21	0.99	8.45	
45	423.15	1.0	67.93 ± 0.01	21.36 ± 0.01	21.36	1.21	1.00	8.64	
50	323.15	0.0	53.64 ± 0.01	947.08 \pm 0.62	962.45	0.86	1.00	-3.79	
50	50 323.15 0.1 54.09 \pm 0.01 835.23 \pm 0.35 816.42 0.89 1.01 -1.95								
Continued on next page									

p	Т	x_{H_2}	L	ρ / [kg/m	1 ³]		Ζ	$E_{\rm tot}$	
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]	
50	323.15	0.2	54.84 ± 0.01	717.14 ± 0.39	688.40	0.92	1.01	-0.25	
50	323.15	0.3	55.83 ± 0.01	599.43 ± 0.11	573.90	0.98	1.02	1.26	
50	323.15	0.4	57.00 ± 0.01	487.91 ± 0.18	470.82	1.04	1.02	2.55	
50	323.15	0.5	58.14 ± 0.01	388.93 ± 0.10	378.43	1.10	1.03	3.64	
50	323.15	0.6	59.16 ± 0.02	301.78 ± 0.24	295.70	1.16	1.03	4.52	
50	323.15	0.7	59.99 ± 0.01	224.79 ± 0.12	221.23	1.21	1.03	5.22	
50	323.15	0.8	60.65 ± 0.01	155.07 ± 0.01	153.15	1.25	1.03	5.76	
50	323.15	0.9	61.05 ± 0.01	90.70 ± 0.02	89.64	1.28	0.90	6.17	
50	323.15	1.0	61.23 ± 0.01	29.16 ± 0.01	28.93	1.29	0.91	6.45	
50	348.15	0.0	55.07 ± 0.01	875.04 ± 0.58	890.10	0.87	0.92	-2.24	
50	348.15	0.1	55.73 ± 0.01	763.72 ± 0.54	752.45	0.90	0.93	-0.49	
50	348.15	0.2	56.68 ± 0.01	649.63 ± 0.45	632.63	0.95	0.94	1.06	
50	348.15	0.3	57.78 ± 0.01	540.80 ± 0.34	526.68	1.00	0.95	2.43	
50	348.15	0.4	58.91 ± 0.02	442.07 ± 0.47	432.59	1.06	0.96	3.58	
50	348.15	0.5	59.94 ± 0.01	354.87 ± 0.18	348.90	1.12	0.97	4.52	
50	348.15	0.6	60.83 ± 0.01	277.53 ± 0.04	273.97	1.17	0.98	5.28	
50	348.15	0.7	61.55 ± 0.02	208.16 ± 0.23	206.04	1.21	0.99	5.90	
50	348.15	0.8	62.07 ± 0.01	144.63 ± 0.10	143.33	1.24	0.99	6.38	
50	348.15	0.9	62.39 ± 0.01	84.98 ± 0.03	84.24	1.26	1.00	6.75	
50	348.15	1.0	62.51 ± 0.01	27.41 ± 0.01	27.27	1.27	1.01	7.00	
50	373.15	0.0	56.69 ± 0.01	802.05 ± 0.53	818.76	0.88	1.01	-0.72	
50	373.15	0.1	57.54 ± 0.01	694.06 ± 0.53	691.10	0.92	1.02	0.88	
50	373.15	0.2	58.57 ± 0.02	588.56 ± 0.67	580.82	0.98	1.02	2.30	
Continued on next page									

p	Т	x_{H_2}	L	ho / [kg/m ³]		Z		$E_{\rm tot}$
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]
50	373.15	0.3	59.64 ± 0.02	491.70 ± 0.61	484.28	1.03	1.02	3.50
50	373.15	0.4	60.70 ± 0.02	404.14 ± 0.35	399.12	1.09	1.03	4.50
50	373.15	0.5	61.61 ± 0.02	326.78 ± 0.36	323.42	1.13	1.03	5.33
50	373.15	0.6	62.38 ± 0.01	257.45 ± 0.11	255.27	1.18	1.03	6.00
50	373.15	0.7	63.00 ± 0.01	194.10 ± 0.03	192.92	1.21	1.03	6.55
50	373.15	0.8	63.44 ± 0.01	135.50 ± 0.01	134.76	1.24	0.63	6.98
50	373.15	0.9	63.65 ± 0.01	80.03 ± 0.04	79.47	1.25	0.69	7.31
50	373.15	1.0	63.71 ± 0.01	25.89 ± 0.01	25.79	1.25	0.73	7.54
50	398.15	0.0	58.40 ± 0.02	733.85 ± 0.68	750.33	0.91	0.77	0.69
50	398.15	0.1	59.39 ± 0.01	631.29 ± 0.35	634.01	0.95	0.81	2.16
50	398.15	0.2	60.40 ± 0.01	536.72 ± 0.27	534.06	1.00	0.84	3.41
50	398.15	0.3	61.45 ± 0.01	449.60 ± 0.05	446.96	1.06	0.86	4.47
50	398.15	0.4	62.39 ± 0.02	372.09 ± 0.29	370.08	1.10	0.89	5.36
50	398.15	0.5	63.20 ± 0.01	302.78 ± 0.19	301.40	1.15	0.91	6.09
50	398.15	0.6	63.85 ± 0.01	240.07 ± 0.02	239.06	1.18	0.93	6.69
50	398.15	0.7	64.36 ± 0.01	182.03 ± 0.08	181.45	1.21	0.95	7.18
50	398.15	0.8	64.69 ± 0.01	127.76 ± 0.05	127.22	1.23	0.96	7.57
50	398.15	0.9	64.86 ± 0.01	75.66 ± 0.02	75.24	1.24	0.98	7.87
50	398.15	1.0	64.88 ± 0.02	24.52 ± 0.02	24.47	1.24	0.99	8.09
50	423.15	0.0	60.21 ± 0.01	669.62 ± 0.26	686.95	0.93	1.00	2.02
50	423.15	0.1	61.21 ± 0.01	576.58 ± 0.34	582.58	0.98	1.01	3.32
50	423.15	0.2	62.18 ± 0.03	491.99 ± 0.60	492.86	1.03	1.02	4.43
50	423.15	0.3	63.15 ± 0.03	414.32 ± 0.54	414.48	1.08	1.03	5.37
Continued on next page								

p	T	x_{H_2}	L	ho / [kg/m ³]		Z		$E_{\rm tot}$
[MPa]	[K]		[Å]	$ ho^{ m MD}$	$ ho^{ m RFP}$	Z^{MD}	$Z^{\rm RFP}$	[kJ/mol]
50	423.15	0.4	63.96 ± 0.01	345.34 ± 0.23	344.94	1.12	1.03	6.15
50	423.15	0.5	64.66 ± 0.01	282.68 ± 0.07	282.32	1.16	1.04	6.80
50	423.15	0.6	65.23 ± 0.02	225.15 ± 0.20	224.93	1.19	1.04	7.35
50	423.15	0.7	65.63 ± 0.02	171.70 ± 0.16	171.36	1.21	0.75	7.79
50	423.15	0.8	65.89 ± 0.01	120.89 ± 0.04	120.52	1.22	0.78	8.15
50	423.15	0.9	66.02 ± 0.02	71.75 ± 0.05	71.46	1.23	0.81	8.43
50	423.15	1.0	65.98 ± 0.02	23.31 ± 0.02	23.29	1.23	0.83	8.63

¹⁸⁹ S10.2 Thermodynamic factors, viscosities, self-diffusion, Maxwell-

190

Stefan and Fick diffusion coefficients

Table S3: Viscosities (η) , thermodynamic factors (Γ) , self-diffusion coefficients (D^{self}) of CO₂ and H₂, Maxwell-Stefan diffusion coefficients (D^{MS}) , and Fick diffusion coefficients obtained from MD simulations of CO₂-H₂ mixtures comprising of 120 molecules are presented as functions of pressure, temperature, and mole fraction of H₂. The viscosity predictions from REFPROP³ (η^{RFP}) are provided for comparison. The tabulated self-, Maxwell-Stefan (MS), and Fick diffusion coefficients have been corrected for finite-size effects using Eqs. 1, 2, and 4 of the main text, respectively. The average box lengths of the cubic simulation boxes with 120 molecules follow from the densities provided in Table S2.

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta \ / \ [\mu ext{Pa}]$	as]	$D^{\text{self}} / [10^{-8} \text{m}^2/\text{s}]$		$D^{\text{self}} / [10^{-8} \text{m}^2/\text{s}]$		$[0^{-8} m^2/s]$ D^{MS}	
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H}_2}^{\mathrm{self}}$	$[10^{-6} \text{m}^2/\text{s}]$	$[10^{-6} {\rm m}^2/{\rm s}]$		
5	323.15	0.0	1.00	16.0 ± 2.8	17.3	21.92	-	-	-		
5	323.15	0.1	0.96	16.9 ± 0.6	17.1	25.26	134.96	1.24 ± 0.04	1.20 ± 0.04		
5	323.15	0.2	0.93	17.3 ± 1.9	16.8	28.67	145.08	1.26 ± 0.01	1.18 ± 0.01		
5	323.15	0.3	0.91	16.8 ± 1.9	16.6	32.74	160.19	1.34 ± 0.03	1.23 ± 0.03		
5	323.15	0.4	0.91	15.8 ± 0.2	16.4	37.04	177.09	1.36 ± 0.06	1.23 ± 0.05		
5	323.15	0.5	0.90	16.3 ± 0.8	16.1	43.92	194.10	1.37 ± 0.35	1.24 ± 0.32		
5	323.15	0.6	0.91	15.7 ± 0.4	15.8	51.30	214.42	1.44 ± 0.05	1.31 ± 0.05		
5	323.15	0.7	0.92	14.4 ± 1.0	15.4	61.78	237.97	1.52 ± 0.09	1.40 ± 0.09		
5	323.15	0.8	0.94	14.0 ± 1.1	14.6	75.43	264.68	1.41 ± 0.02	1.33 ± 0.02		
5	323.15	0.9	0.97	12.2 ± 0.3	13.2	95.20	296.24	1.35 ± 0.03	1.30 ± 0.02		
5	323.15	1.0	1.00	9.7 ± 1.1	9.5	-	332.34	-	-		
5	348.15	0.0	1.00	17.5 ± 0.4	18.3	26.90	-	-	-		
5	348.15	0.1	0.98	17.5 ± 0.5	18.1	30.25	155.38	1.50 ± 0.08	1.47 ± 0.07		
5	348.15	0.2	0.96	18.0 ± 1.3	17.8	34.27	170.83	1.51 ± 0.08	1.45 ± 0.08		
Continued on next page											
p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta \ / \ [\mu Pa$	as]	D^{self} /	$[10^{-8} \text{m}^2/\text{s}]$	D^{MS}	D^{Fick}		
-------	--------	--------------------	--------------------	----------------------	------------------	---------------------------	------------------------------------	---------------------------------	-------------------------------		
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H}_2}^{\mathrm{self}}$	$[10^{-6} \text{m}^2/\text{s}]$	$[10^{-6} {\rm m}^2/{\rm s}]$		
5	348.15	0.3	0.94	16.7 ± 0.6	17.6	39.20	185.94	1.46 ± 0.02	1.38 ± 0.02		
5	348.15	0.4	0.93	15.8 ± 1.1	17.4	44.70	203.92	1.56 ± 0.07	1.45 ± 0.06		
5	348.15	0.5	0.93	17.9 ± 2.0	17.1	51.11	224.04	1.60 ± 0.06	1.49 ± 0.06		
5	348.15	0.6	0.93	17.6 ± 1.1	16.8	60.11	247.74	1.64 ± 0.01	1.52 ± 0.01		
5	348.15	0.7	0.94	14.7 ± 0.8	16.3	72.09	275.79	1.67 ± 0.11	1.56 ± 0.10		
5	348.15	0.8	0.95	14.6 ± 0.5	15.5	88.64	300.38	1.76 ± 0.16	1.67 ± 0.15		
5	348.15	0.9	0.97	12.7 ± 0.8	13.9	108.69	335.95	1.67 ± 0.03	1.62 ± 0.03		
5	348.15	1.0	1.00	9.7 ± 0.5	10.0	-	370.68	-	-		
5	373.15	0.0	1.00	18.2 ± 0.7	19.3	31.52	-	-	-		
5	373.15	0.1	0.98	21.2 ± 4.9	19.1	35.45	178.60	1.67 ± 0.01	1.64 ± 0.01		
5	373.15	0.2	0.97	18.4 ± 0.6	18.9	40.07	193.15	1.74 ± 0.02	1.69 ± 0.02		
5	373.15	0.3	0.96	17.8 ± 0.8	18.7	45.41	216.39	1.87 ± 0.09	1.79 ± 0.09		
5	373.15	0.4	0.95	17.6 ± 0.4	18.4	50.72	232.03	1.86 ± 0.07	1.76 ± 0.07		
5	373.15	0.5	0.94	17.8 ± 0.2	18.1	58.00	253.51	1.82 ± 0.01	1.72 ± 0.01		
5	373.15	0.6	0.94	17.4 ± 0.7	17.8	67.84	280.37	1.84 ± 0.08	1.74 ± 0.08		
5	373.15	0.7	0.95	16.4 ± 1.1	17.2	79.83	307.12	2.06 ± 0.34	1.95 ± 0.32		
5	373.15	0.8	0.96	15.6 ± 1.3	16.3	98.54	343.77	1.96 ± 0.27	1.88 ± 0.25		
5	373.15	0.9	0.98	13.2 ± 1.3	14.6	127.45	382.58	1.69 ± 0.09	1.65 ± 0.09		
5	373.15	1.0	1.00	10.2 ± 0.7	10.5	-	423.91	-	-		
5	398.15	0.0	1.00	20.0 ± 0.7	20.3	37.18	-	-	-		
5	398.15	0.1	0.99	20.4 ± 1.2	20.1	42.28	202.56	1.89 ± 0.06	1.87 ± 0.06		
5	398.15	0.2	0.98	20.9 ± 1.2	19.9	45.42	228.84	1.96 ± 0.05	1.92 ± 0.05		
5	398.15	0.3	0.97	19.2 ± 1.0	19.7	52.07	242.25	2.09 ± 0.10	2.03 ± 0.09		
				Contin	nued on	next pag	ge	1	1		

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta \ / \ [\mu Pa$	as]	D^{self} /	$[10^{-8} m^2/s]$	D^{MS}	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H}_2}^{\mathrm{self}}$	$[10^{-6} \text{m}^2/\text{s}]$	$[10^{-6} {\rm m}^2/{\rm s}]$
5	398.15	0.4	0.96	16.9 ± 3.2	19.5	58.77	263.13	1.93 ± 0.06	1.86 ± 0.06
5	398.15	0.5	0.95	17.9 ± 0.8	19.1	67.64	283.38	2.01 ± 0.06	1.92 ± 0.06
5	398.15	0.6	0.95	17.1 ± 1.5	18.7	78.31	312.91	2.12 ± 0.07	2.02 ± 0.06
5	398.15	0.7	0.96	18.3 ± 1.5	18.1	90.45	345.28	2.10 ± 0.07	2.01 ± 0.07
5	398.15	0.8	0.96	16.8 ± 1.2	17.1	108.75	372.84	2.04 ± 0.05	1.96 ± 0.04
5	398.15	0.9	0.98	14.8 ± 1.1	15.3	139.93	426.12	2.22 ± 0.06	2.17 ± 0.06
5	398.15	1.0	1.00	10.7 ± 1.0	10.9	-	471.04	-	-
5	423.15	0.0	1.00	20.1 ± 1.1	21.3	42.27	-	-	-
5	423.15	0.1	0.99	20.6 ± 0.9	21.1	46.67	224.49	2.16 ± 0.03	2.15 ± 0.03
5	423.15	0.2	0.98	17.5 ± 6.2	21.0	52.27	249.24	2.17 ± 0.01	2.14 ± 0.01
5	423.15	0.3	0.98	19.6 ± 0.4	20.7	59.24	272.64	2.33 ± 0.05	2.27 ± 0.05
5	423.15	0.4	0.97	21.3 ± 2.0	20.5	67.23	289.44	2.32 ± 0.12	2.25 ± 0.11
5	423.15	0.5	0.96	20.0 ± 1.4	20.1	75.59	314.57	2.27 ± 0.13	2.19 ± 0.13
5	423.15	0.6	0.96	18.5 ± 0.9	19.7	85.74	352.51	2.28 ± 0.03	2.19 ± 0.03
5	423.15	0.7	0.96	17.9 ± 1.5	19.0	101.81	376.94	2.36 ± 0.21	2.27 ± 0.21
5	423.15	0.8	0.97	17.0 ± 1.2	17.9	123.77	420.83	2.22 ± 0.04	2.15 ± 0.04
5	423.15	0.9	0.98	14.7 ± 2.1	16.0	153.43	480.22	2.36 ± 0.11	2.31 ± 0.11
5	423.15	1.0	1.00	10.8 ± 0.8	11.4	-	520.37	-	-
10	323.15	0.0	1.00	25.5 ± 0.9	28.4	6.20	-	-	-
10	323.15	0.1	0.85	19.7 ± 0.2	21.2	10.22	46.91	0.45 ± 0.01	0.39 ± 0.01
10	323.15	0.2	0.77	18.1 ± 0.6	19.3	12.87	59.74	0.55 ± 0.01	0.42 ± 0.01
10	323.15	0.3	0.72	17.3 ± 0.2	18.3	15.44	70.49	0.64 ± 0.06	0.47 ± 0.04
10	323.15	0.4	0.72	17.0 ± 0.6	17.6	18.39	82.12	0.64 ± 0.01	0.47 ± 0.01
Continued on next page									

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta \ / \ [\mu Pa$	as]	D^{self} /	$[10^{-8} m^2/s]$	D^{MS}	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H}_2}^{\mathrm{self}}$	$[10^{-6} m^2/s]$	$[10^{-6} {\rm m}^2/{\rm s}]$
10	323.15	0.5	0.75	16.2 ± 0.4	17.1	21.64	91.59	0.70 ± 0.02	0.52 ± 0.01
10	323.15	0.6	0.80	15.7 ± 0.7	16.5	25.94	103.77	0.74 ± 0.03	0.59 ± 0.02
10	323.15	0.7	0.85	16.8 ± 2.1	15.9	31.25	116.98	0.79 ± 0.05	0.67 ± 0.05
10	323.15	0.8	0.91	13.3 ± 0.8	15.0	38.66	131.79	0.72 ± 0.01	0.66 ± 0.01
10	323.15	0.9	0.97	12.3 ± 0.5	13.4	50.20	149.38	0.75 ± 0.02	0.72 ± 0.02
10	323.15	1.0	1.00	10.2 ± 1.8	9.6	-	166.46	-	-
10	348.15	0.0	1.00	21.0 ± 0.4	22.2	10.90	-	-	-
10	348.15	0.1	0.93	19.5 ± 0.5	20.6	13.48	63.53	0.60 ± 0.01	0.56 ± 0.01
10	348.15	0.2	0.88	18.8 ± 0.4	19.7	15.93	73.46	0.69 ± 0.01	0.61 ± 0.01
10	348.15	0.3	0.85	19.6 ± 1.8	19.0	18.75	85.18	0.73 ± 0.02	0.62 ± 0.02
10	348.15	0.4	0.83	18.0 ± 0.7	18.5	21.85	95.53	0.75 ± 0.02	0.63 ± 0.01
10	348.15	0.5	0.83	17.6 ± 1.4	18.0	25.42	107.30	0.77 ± 0.05	0.64 ± 0.04
10	348.15	0.6	0.85	16.4 ± 0.3	17.4	29.96	118.14	0.83 ± 0.02	0.70 ± 0.02
10	348.15	0.7	0.88	15.8 ± 0.6	16.7	35.99	133.49	0.84 ± 0.02	0.74 ± 0.02
10	348.15	0.8	0.91	14.4 ± 0.3	15.8	43.64	150.66	0.89 ± 0.06	0.81 ± 0.05
10	348.15	0.9	0.95	13.4 ± 1.0	14.1	55.04	170.38	0.87 ± 0.03	0.83 ± 0.03
10	348.15	1.0	1.00	9.8 ± 0.3	10.1	-	189.67	-	-
10	373.15	0.0	1.00	21.6 ± 0.7	21.8	14.07	-	-	-
10	373.15	0.1	0.96	20.9 ± 2.2	21.0	16.65	77.96	0.73 ± 0.01	0.70 ± 0.01
10	373.15	0.2	0.92	21.2 ± 2.6	20.3	19.27	88.73	0.81 ± 0.02	0.74 ± 0.02
10	373.15	0.3	0.90	19.7 ± 1.5	19.8	22.35	98.83	0.84 ± 0.01	0.75 ± 0.01
10	373.15	0.4	0.88	18.9 ± 1.1	19.3	25.76	111.48	0.86 ± 0.04	0.76 ± 0.04
10	373.15	0.5	0.88	18.1 ± 0.9	18.9	29.55	122.08	0.93 ± 0.08	0.82 ± 0.07
				Contin	nued on	next pag	ge		

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta \ / \ [\mu Pa$	as]	D^{self} /	$[10^{-8} m^2/s]$	D^{MS}	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H}_2}^{\mathrm{self}}$	$[10^{-6} m^2/s]$	$[10^{-6} {\rm m}^2/{\rm s}]$
10	373.15	0.6	0.88	18.1 ± 0.8	18.3	34.05	136.30	0.90 ± 0.02	0.79 ± 0.02
10	373.15	0.7	0.90	18.6 ± 2.7	17.6	41.78	151.76	0.93 ± 0.05	0.83 ± 0.04
10	373.15	0.8	0.92	15.6 ± 0.9	16.6	50.72	169.05	1.02 ± 0.06	0.94 ± 0.06
10	373.15	0.9	0.96	14.8 ± 2.1	14.8	63.15	192.91	0.95 ± 0.04	0.91 ± 0.04
10	373.15	1.0	1.00	9.9 ± 0.3	10.6	-	212.76	-	-
10	398.15	0.0	1.00	21.0 ± 1.8	22.2	17.24	-	-	-
10	398.15	0.1	0.97	21.2 ± 1.9	21.6	19.68	91.91	0.88 ± 0.01	0.85 ± 0.01
10	398.15	0.2	0.95	22.0 ± 1.8	21.1	22.25	101.59	0.89 ± 0.01	0.84 ± 0.01
10	398.15	0.3	0.93	20.3 ± 1.0	20.7	25.34	113.95	1.02 ± 0.06	0.95 ± 0.05
10	398.15	0.4	0.91	19.7 ± 0.7	20.2	28.83	125.96	1.01 ± 0.02	0.92 ± 0.02
10	398.15	0.5	0.90	19.6 ± 1.4	19.8	33.32	137.76	1.03 ± 0.05	0.93 ± 0.04
10	398.15	0.6	0.90	18.5 ± 0.9	19.2	39.29	154.84	1.04 ± 0.03	0.94 ± 0.02
10	398.15	0.7	0.91	17.2 ± 0.3	18.5	45.86	169.54	1.12 ± 0.01	1.02 ± 0.01
10	398.15	0.8	0.93	15.9 ± 0.3	17.4	57.28	189.93	1.09 ± 0.02	1.02 ± 0.02
10	398.15	0.9	0.96	14.0 ± 0.6	15.4	69.30	212.05	1.09 ± 0.04	1.04 ± 0.04
10	398.15	1.0	1.00	10.3 ± 0.2	11.0	-	236.14	-	-
10	423.15	0.0	1.00	23.3 ± 1.2	22.8	19.99	-	-	-
10	423.15	0.1	0.98	22.4 ± 0.6	22.4	22.90	104.34	1.00 ± 0.03	0.98 ± 0.03
10	423.15	0.2	0.96	21.0 ± 0.2	22.0	25.57	116.03	1.06 ± 0.03	1.02 ± 0.03
10	423.15	0.3	0.94	20.8 ± 0.7	21.6	28.91	129.73	1.11 ± 0.04	1.05 ± 0.04
10	423.15	0.4	0.93	20.3 ± 0.4	21.2	33.17	141.51	1.12 ± 0.06	1.04 ± 0.06
10	423.15	0.5	0.92	20.5 ± 0.9	20.7	37.63	157.07	1.16 ± 0.03	1.07 ± 0.03
10	423.15	0.6	0.92	19.9 ± 1.3	20.1	43.09	173.19	1.12 ± 0.09	1.03 ± 0.08
Continued on next page									

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta \ / \ [\mu \mathrm{Pa}]$	as]	D^{self} /	$[10^{-8} m^2/s]$	D^{MS}	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H_2}}^{\mathrm{self}}$	$[10^{-6} m^2/s]$	$[10^{-6} {\rm m}^2/{\rm s}]$
10	423.15	0.7	0.92	18.4 ± 1.1	19.3	53.16	191.77	1.17 ± 0.01	1.08 ± 0.01
10	423.15	0.8	0.94	17.2 ± 1.1	18.2	63.55	208.51	1.16 ± 0.01	1.09 ± 0.01
10	423.15	0.9	0.96	16.1 ± 1.6	16.1	78.48	236.12	1.18 ± 0.02	1.13 ± 0.02
10	423.15	1.0	1.00	11.2 ± 0.5	11.5	-	259.70	-	-
15	323.15	0.0	1.00	57.7 ± 0.7	56.5	2.68	-	-	-
15	323.15	0.1	0.71	32.0 ± 3.1	33.4	5.07	18.91	0.18 ± 0.01	0.13 ± 0.01
15	323.15	0.2	0.55	23.1 ± 1.0	24.7	7.60	31.20	0.29 ± 0.01	0.16 ± 0.01
15	323.15	0.3	0.48	19.3 ± 0.8	21.3	9.81	41.07	0.37 ± 0.01	0.18 ± 0.01
15	323.15	0.4	0.50	18.1 ± 0.5	19.5	12.03	49.70	0.42 ± 0.01	0.21 ± 0.01
15	323.15	0.5	0.57	17.4 ± 0.7	18.3	14.67	58.63	0.45 ± 0.01	0.26 ± 0.01
15	323.15	0.6	0.67	17.4 ± 2.3	17.3	17.51	67.05	0.48 ± 0.01	0.32 ± 0.01
15	323.15	0.7	0.79	15.6 ± 0.8	16.4	21.46	77.06	0.51 ± 0.01	0.40 ± 0.01
15	323.15	0.8	0.90	14.2 ± 0.4	15.3	26.41	88.59	0.52 ± 0.01	0.47 ± 0.01
15	323.15	0.9	0.97	12.3 ± 0.3	13.6	34.40	99.04	0.53 ± 0.02	0.52 ± 0.02
15	323.15	1.0	1.00	9.4 ± 0.4	9.8	-	113.71	-	-
15	348.15	0.0	1.00	32.0 ± 0.5	34.8	5.26	-	-	-
15	348.15	0.1	0.85	25.3 ± 2.9	26.4	7.79	32.60	0.31 ± 0.01	0.26 ± 0.01
15	348.15	0.2	0.76	20.4 ± 1.0	23.0	9.97	42.09	0.39 ± 0.01	0.29 ± 0.01
15	348.15	0.3	0.71	20.0 ± 1.1	21.1	12.09	51.43	0.44 ± 0.01	0.32 ± 0.01
15	348.15	0.4	0.70	19.6 ± 1.1	19.9	14.69	60.78	0.50 ± 0.02	0.35 ± 0.01
15	348.15	0.5	0.72	18.5 ± 1.0	19.0	17.22	69.48	0.54 ± 0.03	0.39 ± 0.02
15	348.15	0.6	0.76	17.3 ± 0.5	18.1	20.15	78.53	0.55 ± 0.03	0.42 ± 0.02
15	348.15	0.7	0.82	16.9 ± 0.5	17.2	24.76	88.65	0.58 ± 0.01	0.47 ± 0.01
				Contin	nued on	next pag	çe		

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta \ / \ [\mu Pa$	as]	D^{self} /	$[10^{-8} m^2/s]$	D^{MS}	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H}_2}^{\mathrm{self}}$	$[10^{-6} m^2/s]$	$[10^{-6} {\rm m}^2/{\rm s}]$
15	348.15	0.8	0.88	15.0 ± 0.8	16.1	30.22	100.80	0.59 ± 0.01	0.52 ± 0.01
15	348.15	0.9	0.95	13.4 ± 0.9	14.3	40.47	113.52	0.59 ± 0.01	0.56 ± 0.01
15	348.15	1.0	1.00	10.4 ± 0.9	10.2	-	127.84	-	-
15	373.15	0.0	1.00	26.4 ± 1.6	27.8	8.14	-	-	-
15	373.15	0.1	0.92	23.1 ± 0.6	24.6	10.19	43.44	0.43 ± 0.02	0.39 ± 0.01
15	373.15	0.2	0.86	24.4 ± 5.9	22.7	12.31	52.53	0.48 ± 0.01	0.41 ± 0.01
15	373.15	0.3	0.82	21.3 ± 1.1	21.5	14.41	61.57	0.53 ± 0.01	0.43 ± 0.01
15	373.15	0.4	0.80	19.3 ± 0.5	20.5	17.01	69.69	0.57 ± 0.01	0.46 ± 0.01
15	373.15	0.5	0.80	19.1 ± 0.4	19.7	19.73	79.58	0.63 ± 0.04	0.50 ± 0.03
15	373.15	0.6	0.82	18.5 ± 0.4	18.9	23.35	89.33	0.62 ± 0.01	0.51 ± 0.01
15	373.15	0.7	0.85	17.3 ± 0.7	18.0	28.13	100.31	0.64 ± 0.01	0.54 ± 0.01
15	373.15	0.8	0.89	15.8 ± 0.5	16.9	34.55	113.37	0.70 ± 0.02	0.63 ± 0.02
15	373.15	0.9	0.94	13.6 ± 0.4	14.9	43.93	128.79	0.70 ± 0.04	0.66 ± 0.03
15	373.15	1.0	1.00	11.1 ± 1.0	10.7	-	143.91	-	-
15	398.15	0.0	1.00	24.9 ± 0.4	26.0	10.46	-	-	-
15	398.15	0.1	0.95	23.2 ± 1.0	24.2	12.47	54.41	0.52 ± 0.01	0.50 ± 0.01
15	398.15	0.2	0.91	23.6 ± 1.6	23.0	14.56	62.72	0.59 ± 0.03	0.54 ± 0.02
15	398.15	0.3	0.87	22.1 ± 0.7	22.1	16.96	71.49	0.62 ± 0.01	0.54 ± 0.01
15	398.15	0.4	0.86	21.6 ± 1.2	21.3	19.59	80.36	0.66 ± 0.01	0.56 ± 0.01
15	398.15	0.5	0.85	19.6 ± 0.7	20.5	22.75	90.30	0.67 ± 0.01	0.57 ± 0.01
15	398.15	0.6	0.85	18.9 ± 1.0	19.8	27.22	100.31	0.70 ± 0.02	0.60 ± 0.02
15	398.15	0.7	0.87	17.9 ± 0.6	18.9	31.69	112.90	0.71 ± 0.01	0.62 ± 0.01
15	398.15	0.8	0.90	16.5 ± 0.8	17.6	39.02	126.34	0.74 ± 0.01	0.67 ± 0.01
Continued on next page									

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta \ / \ [\mu Pa$	as]	D^{self} /	$[10^{-8} m^2/s]$	D^{MS}	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H_2}}^{\mathrm{self}}$	$[10^{-6} m^2/s]$	$[10^{-6} m^2/s]$
15	398.15	0.9	0.94	14.4 ± 0.3	15.6	49.63	144.12	0.73 ± 0.04	0.69 ± 0.03
15	398.15	1.0	1.00	11.5 ± 1.0	11.1	-	158.95	-	-
15	423.15	0.0	1.00	24.5 ± 0.9	25.6	12.65	-	-	-
15	423.15	0.1	0.96	23.7 ± 0.7	24.4	14.68	64.13	0.61 ± 0.02	0.59 ± 0.02
15	423.15	0.2	0.93	22.7 ± 0.9	23.5	16.80	72.71	0.67 ± 0.02	0.62 ± 0.02
15	423.15	0.3	0.91	21.5 ± 0.4	22.7	19.19	82.02	0.68 ± 0.01	0.62 ± 0.01
15	423.15	0.4	0.89	22.0 ± 0.7	22.1	21.99	91.29	0.71 ± 0.01	0.63 ± 0.01
15	423.15	0.5	0.88	20.7 ± 0.6	21.4	25.26	102.28	0.74 ± 0.02	0.65 ± 0.02
15	423.15	0.6	0.88	19.7 ± 0.6	20.6	29.44	113.81	0.78 ± 0.02	0.68 ± 0.02
15	423.15	0.7	0.89	19.4 ± 0.9	19.7	35.44	126.36	0.92 ± 0.11	0.82 ± 0.10
15	423.15	0.8	0.91	16.9 ± 0.6	18.4	44.01	141.19	0.79 ± 0.04	0.72 ± 0.04
15	423.15	0.9	0.95	14.7 ± 0.7	16.2	54.42	159.56	0.85 ± 0.01	0.81 ± 0.01
15	423.15	1.0	1.00	11.3 ± 0.6	11.6	-	182.40	-	-
20	323.15	0.0	1.00	68.8 ± 0.8	68.7	2.24	-	-	-
20	323.15	0.1	0.68	42.7 ± 1.3	44.9	3.49	11.32	0.11 ± 0.01	0.08 ± 0.01
20	323.15	0.2	0.49	29.7 ± 2.5	31.7	5.24	19.05	0.19 ± 0.01	0.09 ± 0.01
20	323.15	0.3	0.40	23.0 ± 0.8	25.2	7.07	27.48	0.28 ± 0.03	0.11 ± 0.01
20	323.15	0.4	0.40	20.3 ± 0.6	21.8	8.90	34.91	0.31 ± 0.01	0.12 ± 0.01
20	323.15	0.5	0.47	18.2 ± 0.3	19.8	11.06	41.95	0.34 ± 0.01	0.16 ± 0.01
20	323.15	0.6	0.57	17.1 ± 0.5	18.3	13.20	49.60	0.36 ± 0.01	0.21 ± 0.01
20	323.15	0.7	0.70	16.0 ± 0.6	17.0	16.19	57.26	0.38 ± 0.02	0.27 ± 0.01
20	323.15	0.8	0.83	14.6 ± 0.5	15.7	20.84	65.94	0.40 ± 0.01	0.33 ± 0.01
20	323.15	0.9	0.94	13.1 ± 0.5	13.8	28.53	76.47	0.41 ± 0.01	0.39 ± 0.01
Continued on next page									

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta \ / \ [\mu Pa$	as]	D^{self} /	$[10^{-8} m^2/s]$	D^{MS}	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H}_2}^{\mathrm{self}}$	$[10^{-6} m^2/s]$	$[10^{-6} {\rm m}^2/{\rm s}]$
20	323.15	1.0	1.00	9.5 ± 0.2	9.9	-	86.03	-	-
20	348.15	0.0	1.00	46.6 ± 0.4	49.1	3.52	-	-	-
20	348.15	0.1	0.80	32.1 ± 1.1	34.7	5.26	19.18	0.19 ± 0.01	0.15 ± 0.01
20	348.15	0.2	0.67	25.4 ± 0.4	27.7	7.13	27.65	0.26 ± 0.01	0.18 ± 0.01
20	348.15	0.3	0.61	22.4 ± 0.2	24.0	9.02	35.06	0.32 ± 0.01	0.19 ± 0.01
20	348.15	0.4	0.60	19.8 ± 0.9	21.7	10.82	42.94	0.35 ± 0.01	0.21 ± 0.01
20	348.15	0.5	0.63	19.2 ± 1.1	20.2	13.11	50.32	0.39 ± 0.01	0.25 ± 0.01
20	348.15	0.6	0.68	19.1 ± 2.0	18.9	15.63	57.04	0.43 ± 0.02	0.30 ± 0.01
20	348.15	0.7	0.76	17.7 ± 1.3	17.8	18.84	65.99	0.44 ± 0.01	0.33 ± 0.01
20	348.15	0.8	0.85	15.2 ± 0.4	16.4	24.11	75.04	0.45 ± 0.01	0.38 ± 0.01
20	348.15	0.9	0.93	13.5 ± 0.3	14.5	30.44	86.87	0.53 ± 0.08	0.49 ± 0.07
20	348.15	1.0	1.00	9.6 ± 0.7	10.3	-	97.03	-	-
20	373.15	0.0	1.00	35.1 ± 0.3	37.2	5.34	-	-	-
20	373.15	0.1	0.88	27.5 ± 0.3	30.0	7.17	27.38	0.27 ± 0.01	0.23 ± 0.01
20	373.15	0.2	0.79	24.6 ± 0.7	26.1	8.96	35.23	0.34 ± 0.01	0.27 ± 0.01
20	373.15	0.3	0.74	22.4 ± 0.5	23.7	10.82	43.27	0.38 ± 0.01	0.28 ± 0.01
20	373.15	0.4	0.72	20.9 ± 0.6	22.0	12.84	50.12	0.41 ± 0.01	0.30 ± 0.01
20	373.15	0.5	0.73	19.7 ± 0.6	20.8	15.24	57.56	0.45 ± 0.02	0.33 ± 0.01
20	373.15	0.6	0.76	19.0 ± 0.4	19.6	18.10	66.62	0.52 ± 0.06	0.40 ± 0.05
20	373.15	0.7	0.80	18.0 ± 1.1	18.5	21.74	75.40	0.51 ± 0.02	0.41 ± 0.01
20	373.15	0.8	0.86	16.0 ± 0.7	17.1	27.71	85.63	0.50 ± 0.01	0.43 ± 0.01
20	373.15	0.9	0.93	13.9 ± 1.2	15.1	34.69	97.16	0.51 ± 0.02	0.48 ± 0.02
20	373.15	1.0	1.00	10.7 ± 0.3	10.8	-	108.10	-	-
Continued on next page									

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta \ / \ [\mu Pa$	as]	D^{self} /	$[10^{-8} \text{m}^2/\text{s}]$	D^{MS}	D^{Fick}	
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H}_2}^{\mathrm{self}}$	$[10^{-6} \text{m}^2/\text{s}]$	$[10^{-6} {\rm m}^2/{\rm s}]$	
20	398.15	0.0	1.00	30.2 ± 1.0	31.9	7.29	-	-	-	
20	398.15	0.1	0.92	26.0 ± 0.6	28.0	8.96	35.89	0.34 ± 0.01	0.32 ± 0.01	
20	398.15	0.2	0.86	25.0 ± 1.9	25.5	10.76	44.05	0.40 ± 0.01	0.34 ± 0.01	
20	398.15	0.3	0.82	23.0 ± 0.5	23.8	12.58	50.97	0.45 ± 0.02	0.37 ± 0.01	
20	398.15	0.4	0.80	21.6 ± 1.4	22.5	15.00	58.52	0.48 ± 0.03	0.38 ± 0.02	
20	398.15	0.5	0.79	20.2 ± 0.8	21.4	17.21	66.72	0.51 ± 0.02	0.40 ± 0.02	
20	398.15	0.6	0.81	19.5 ± 0.8	20.4	20.48	74.56	0.53 ± 0.01	0.42 ± 0.01	
20	398.15	0.7	0.83	18.9 ± 0.8	19.3	24.68	83.98	0.56 ± 0.03	0.47 ± 0.03	
20	398.15	0.8	0.87	17.1 ± 0.8	17.9	30.22	95.10	0.58 ± 0.02	0.51 ± 0.02	
20	398.15	0.9	0.93	15.2 ± 1.3	15.8	37.95	107.94	0.56 ± 0.01	0.52 ± 0.01	
20	398.15	1.0	1.00	10.9 ± 0.5	11.2	-	121.09	-	-	
20	423.15	0.0	1.00	29.1 ± 1.3	29.8	9.05	-	-	-	
20	423.15	0.1	0.95	26.7 ± 0.6	27.3	10.83	44.04	0.42 ± 0.01	0.40 ± 0.01	
20	423.15	0.2	0.90	24.3 ± 0.2	25.6	12.50	51.34	0.46 ± 0.02	0.41 ± 0.02	
20	423.15	0.3	0.87	23.7 ± 1.5	24.2	14.41	59.56	0.52 ± 0.02	0.45 ± 0.02	
20	423.15	0.4	0.85	22.3 ± 1.3	23.1	16.92	66.57	0.54 ± 0.01	0.46 ± 0.01	
20	423.15	0.5	0.84	21.3 ± 1.1	22.1	19.47	74.77	0.57 ± 0.02	0.48 ± 0.01	
20	423.15	0.6	0.84	20.2 ± 0.6	21.2	22.87	83.57	0.59 ± 0.02	0.50 ± 0.02	
20	423.15	0.7	0.86	19.0 ± 0.7	20.1	27.35	94.49	0.60 ± 0.01	0.52 ± 0.01	
20	423.15	0.8	0.89	17.5 ± 0.9	18.6	35.38	105.52	0.63 ± 0.03	0.56 ± 0.03	
20	423.15	0.9	0.94	14.9 ± 0.5	16.4	42.40	120.56	0.62 ± 0.01	0.58 ± 0.01	
20	423.15	1.0	1.00	11.1 ± 0.3	11.7	-	134.35	-	-	
25	323.15	0.0	1.00	78.4 ± 1.3	77.4	2.01	-	-	-	
	Continued on next page									

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta / [\mu Pa$	as]	D^{self} /	$[10^{-8} m^2/s]$	D^{MS}	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H}_2}^{\mathrm{self}}$	$[10^{-6} m^2/s]$	$[10^{-6} {\rm m}^2/{\rm s}]$
25	323.15	0.1	0.68	52.1 ± 0.7	53.0	2.89	8.56	0.09 ± 0.01	0.06 ± 0.01
25	323.15	0.2	0.48	35.5 ± 0.5	38.0	4.12	13.72	0.14 ± 0.01	0.07 ± 0.01
25	323.15	0.3	0.38	26.8 ± 0.5	29.3	5.63	20.01	0.19 ± 0.01	0.07 ± 0.01
25	323.15	0.4	0.37	22.3 ± 0.2	24.5	7.18	26.00	0.24 ± 0.01	0.09 ± 0.01
25	323.15	0.5	0.41	19.8 ± 0.6	21.4	8.97	31.94	0.28 ± 0.01	0.12 ± 0.01
25	323.15	0.6	0.51	17.7 ± 0.5	19.3	10.95	38.84	0.30 ± 0.01	0.15 ± 0.01
25	323.15	0.7	0.63	16.8 ± 0.5	17.7	13.58	45.46	0.33 ± 0.02	0.21 ± 0.01
25	323.15	0.8	0.77	15.7 ± 0.7	16.1	16.83	52.82	0.35 ± 0.04	0.27 ± 0.03
25	323.15	0.9	0.89	12.9 ± 0.2	14.1	22.13	61.21	0.35 ± 0.01	0.31 ± 0.01
25	323.15	1.0	1.00	9.8 ± 0.4	10.0	-	71.11	-	-
25	348.15	0.0	1.00	57.4 ± 0.8	59.0	2.93	-	-	-
25	348.15	0.1	0.78	39.9 ± 0.3	42.4	4.13	13.48	0.14 ± 0.01	0.11 ± 0.01
25	348.15	0.2	0.63	29.6 ± 1.1	32.7	5.58	19.74	0.19 ± 0.01	0.12 ± 0.01
25	348.15	0.3	0.56	25.1 ± 0.4	27.2	7.09	25.90	0.24 ± 0.01	0.13 ± 0.01
25	348.15	0.4	0.54	21.8 ± 0.7	23.8	8.72	32.35	0.28 ± 0.01	0.15 ± 0.01
25	348.15	0.5	0.56	20.3 ± 0.5	21.6	10.58	38.50	0.32 ± 0.02	0.18 ± 0.01
25	348.15	0.6	0.62	20.1 ± 4.1	19.8	13.09	45.77	0.36 ± 0.02	0.23 ± 0.01
25	348.15	0.7	0.71	17.4 ± 0.8	18.3	15.88	52.84	0.37 ± 0.01	0.26 ± 0.01
25	348.15	0.8	0.81	15.6 ± 0.5	16.8	19.56	60.85	0.37 ± 0.01	0.30 ± 0.01
25	348.15	0.9	0.91	13.4 ± 0.4	14.7	24.51	70.52	0.39 ± 0.01	0.35 ± 0.01
25	348.15	1.0	1.00	10.2 ± 0.3	10.5	-	78.70	-	-
25	373.15	0.0	1.00	43.5 ± 0.5	46.4	4.12	-	-	-
25	373.15	0.1	0.85	33.0 ± 0.5	36.0	5.55	19.54	0.19 ± 0.01	0.16 ± 0.01
Continued on next page									

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta / [\mu Pa$	as]	D^{self} /	$[10^{-8} m^2/s]$	D^{MS}	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H}_2}^{\mathrm{self}}$	$[10^{-6} m^2/s]$	$[10^{-6} {\rm m}^2/{\rm s}]$
25	373.15	0.2	0.75	28.0 ± 0.7	30.0	7.03	26.07	0.24 ± 0.01	0.18 ± 0.01
25	373.15	0.3	0.69	24.6 ± 0.9	26.2	8.61	32.32	0.29 ± 0.01	0.20 ± 0.01
25	373.15	0.4	0.66	22.9 ± 1.2	23.7	10.32	38.56	0.33 ± 0.01	0.22 ± 0.01
25	373.15	0.5	0.67	21.3 ± 0.8	21.9	12.41	45.52	0.36 ± 0.01	0.24 ± 0.01
25	373.15	0.6	0.70	21.1 ± 1.4	20.4	14.91	52.24	0.39 ± 0.01	0.27 ± 0.01
25	373.15	0.7	0.76	18.2 ± 0.6	19.0	17.85	59.94	0.40 ± 0.01	0.30 ± 0.01
25	373.15	0.8	0.83	16.1 ± 0.3	17.5	21.71	68.65	0.44 ± 0.02	0.37 ± 0.02
25	373.15	0.9	0.91	14.5 ± 0.7	15.3	28.27	78.06	0.42 ± 0.01	0.38 ± 0.01
25	373.15	1.0	1.00	10.3 ± 0.2	10.9	-	88.49	-	-
25	398.15	0.0	1.00	41.3 ± 11.0	38.9	5.54	-	-	-
25	398.15	0.1	0.90	30.2 ± 0.5	32.5	6.97	26.03	0.25 ± 0.01	0.23 ± 0.01
25	398.15	0.2	0.83	26.6 ± 0.8	28.6	8.57	32.51	0.30 ± 0.01	0.25 ± 0.01
25	398.15	0.3	0.78	24.8 ± 0.4	25.9	10.19	38.44	0.35 ± 0.01	0.27 ± 0.01
25	398.15	0.4	0.75	22.8 ± 1.2	23.9	12.00	44.97	0.38 ± 0.01	0.29 ± 0.01
25	398.15	0.5	0.75	20.8 ± 0.3	22.4	14.05	51.73	0.40 ± 0.01	0.30 ± 0.01
25	398.15	0.6	0.76	20.1 ± 0.4	21.1	16.56	59.48	0.42 ± 0.01	0.32 ± 0.01
25	398.15	0.7	0.80	18.3 ± 0.8	19.7	20.05	66.87	0.44 ± 0.02	0.35 ± 0.01
25	398.15	0.8	0.85	16.8 ± 0.5	18.2	24.67	76.79	0.48 ± 0.01	0.41 ± 0.01
25	398.15	0.9	0.92	14.3 ± 0.3	15.9	31.13	87.44	0.50 ± 0.06	0.46 ± 0.05
25	398.15	1.0	1.00	11.1 ± 0.3	11.3	-	98.55	-	-
25	423.15	0.0	1.00	32.5 ± 0.3	34.9	7.02	-	-	-
25	423.15	0.1	0.93	29.2 ± 0.9	30.8	8.52	32.25	0.31 ± 0.01	0.29 ± 0.01
25	423.15	0.2	0.88	26.0 ± 0.5	28.0	10.06	39.12	0.36 ± 0.01	0.31 ± 0.01
				Contir	nued on	next pag	ge	·	

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta \ / \ [\mu Pa]$	as]	D^{self} /	$[10^{-8} m^2/s]$	D^{MS}	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H}_2}^{\mathrm{self}}$	$[10^{-6} m^2/s]$	$[10^{-6} {\rm m}^2/{\rm s}]$
25	423.15	0.3	0.84	25.6 ± 2.1	25.9	11.74	45.50	0.39 ± 0.01	0.33 ± 0.01
25	423.15	0.4	0.81	23.3 ± 0.6	24.3	13.62	52.22	0.42 ± 0.01	0.34 ± 0.01
25	423.15	0.5	0.80	22.2 ± 0.6	23.0	15.84	59.06	0.47 ± 0.01	0.37 ± 0.01
25	423.15	0.6	0.80	20.6 ± 0.2	21.8	18.77	66.90	0.49 ± 0.01	0.39 ± 0.01
25	423.15	0.7	0.83	19.3 ± 0.7	20.5	22.24	75.31	0.49 ± 0.01	0.41 ± 0.01
25	423.15	0.8	0.87	17.7 ± 0.6	18.9	27.38	84.76	0.52 ± 0.03	0.45 ± 0.02
25	423.15	0.9	0.92	15.0 ± 0.8	16.5	34.73	96.83	0.52 ± 0.01	0.48 ± 0.01
25	423.15	1.0	1.00	11.3 ± 0.5	11.8	-	107.97	-	-
30	323.15	0.0	1.00	86.4 ± 0.7	84.8	1.86	-	-	_
30	323.15	0.1	0.69	60.5 ± 0.2	59.3	2.55	7.27	0.07 ± 0.01	0.05 ± 0.01
30	323.15	0.2	0.49	41.7 ± 0.4	43.2	3.52	10.95	0.11 ± 0.01	0.06 ± 0.01
30	323.15	0.3	0.38	30.3 ± 0.4	33.1	4.72	15.59	0.16 ± 0.01	0.06 ± 0.01
30	323.15	0.4	0.35	25.0 ± 0.6	26.9	6.12	20.75	0.20 ± 0.01	0.07 ± 0.01
30	323.15	0.5	0.38	21.2 ± 0.4	23.1	7.64	26.33	0.23 ± 0.01	0.09 ± 0.01
30	323.15	0.6	0.46	20.0 ± 1.4	20.4	9.44	31.95	0.26 ± 0.01	0.12 ± 0.01
30	323.15	0.7	0.57	17.3 ± 0.6	18.4	11.68	37.99	0.29 ± 0.02	0.17 ± 0.01
30	323.15	0.8	0.71	15.2 ± 0.3	16.5	14.82	44.68	0.29 ± 0.01	0.20 ± 0.01
30	323.15	0.9	0.86	12.8 ± 0.4	14.3	18.85	52.25	0.30 ± 0.01	0.26 ± 0.01
30	323.15	1.0	1.00	10.3 ± 0.6	10.2	-	59.42	-	-
30	348.15	0.0	1.00	65.7 ± 0.6	66.7	2.54	-	-	-
30	348.15	0.1	0.77	46.1 ± 0.5	48.7	3.51	10.61	0.11 ± 0.01	0.08 ± 0.01
30	348.15	0.2	0.62	34.8 ± 0.5	37.4	4.67	15.22	0.15 ± 0.01	0.09 ± 0.01
30	348.15	0.3	0.53	27.6 ± 1.0	30.3	5.99	20.62	0.20 ± 0.01	0.10 ± 0.01
				Contin	nued on	next pag	ge	·	

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta \ / \ [\mu P a]$	as]	D^{self} /	$[10^{-8} m^2/s]$	D^{MS}	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H_2}}^{\mathrm{self}}$	$[10^{-6} m^2/s]$	$[10^{-6} {\rm m}^2/{\rm s}]$
30	348.15	0.4	0.50	24.5 ± 1.5	26.0	7.42	25.98	0.24 ± 0.01	0.12 ± 0.01
30	348.15	0.5	0.52	22.0 ± 1.8	23.0	9.14	31.58	0.26 ± 0.01	0.14 ± 0.01
30	348.15	0.6	0.58	19.5 ± 0.7	20.8	10.91	37.15	0.28 ± 0.01	0.16 ± 0.01
30	348.15	0.7	0.66	17.8 ± 0.6	18.9	13.54	43.72	0.31 ± 0.01	0.20 ± 0.01
30	348.15	0.8	0.77	16.3 ± 0.5	17.1	16.77	50.45	0.32 ± 0.01	0.24 ± 0.01
30	348.15	0.9	0.88	14.2 ± 1.0	14.9	21.91	59.11	0.32 ± 0.01	0.28 ± 0.01
30	348.15	1.0	1.00	10.3 ± 0.7	10.6	-	67.40	-	-
30	373.15	0.0	1.00	51.4 ± 1.3	54.0	3.44	-	-	-
30	373.15	0.1	0.84	38.8 ± 0.8	41.6	4.59	14.96	0.15 ± 0.01	0.12 ± 0.01
30	373.15	0.2	0.72	31.3 ± 0.7	33.7	5.88	20.22	0.20 ± 0.01	0.14 ± 0.01
30	373.15	0.3	0.65	27.1 ± 1.0	28.9	7.22	25.82	0.23 ± 0.01	0.15 ± 0.01
30	373.15	0.4	0.62	24.0 ± 0.3	25.6	8.79	31.44	0.27 ± 0.01	0.17 ± 0.01
30	373.15	0.5	0.63	22.3 ± 1.2	23.1	10.58	37.05	0.30 ± 0.01	0.19 ± 0.01
30	373.15	0.6	0.66	21.5 ± 2.3	21.2	12.64	43.34	0.33 ± 0.01	0.22 ± 0.01
30	373.15	0.7	0.72	17.0 ± 3.2	19.5	15.37	49.97	0.35 ± 0.01	0.25 ± 0.01
30	373.15	0.8	0.80	16.6 ± 0.3	17.8	19.01	57.62	0.36 ± 0.01	0.29 ± 0.01
30	373.15	0.9	0.89	15.0 ± 1.1	15.5	23.92	66.03	0.36 ± 0.01	0.32 ± 0.01
30	373.15	1.0	1.00	10.4 ± 0.5	11.0	-	74.20	-	-
30	398.15	0.0	1.00	42.9 ± 1.1	45.5	4.57	-	-	-
30	398.15	0.1	0.89	34.4 ± 0.4	37.1	5.78	20.07	0.20 ± 0.01	0.17 ± 0.01
30	398.15	0.2	0.80	30.3 ± 1.3	31.8	7.10	25.90	0.24 ± 0.01	0.20 ± 0.01
30	398.15	0.3	0.74	26.9 ± 0.6	28.1	8.62	30.90	0.28 ± 0.01	0.21 ± 0.01
30	398.15	0.4	0.71	24.0 ± 0.4	25.5	10.13	36.97	0.31 ± 0.01	0.22 ± 0.01
	1		1	Contin	nued on	next pag	çe	1	1

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta / [\mu Pa$	as]	D^{self} /	$[10^{-8} m^2/s]$	D^{MS}	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H}_2}^{\mathrm{self}}$	$[10^{-6} m^2/s]$	$[10^{-6} {\rm m}^2/{\rm s}]$
30	398.15	0.5	0.71	22.2 ± 0.7	23.5	12.02	42.73	0.35 ± 0.02	0.25 ± 0.02
30	398.15	0.6	0.72	20.9 ± 0.6	21.8	14.31	49.35	0.37 ± 0.01	0.26 ± 0.01
30	398.15	0.7	0.76	18.9 ± 0.6	20.2	17.36	56.46	0.38 ± 0.01	0.29 ± 0.01
30	398.15	0.8	0.82	17.2 ± 0.3	18.5	21.27	64.21	0.41 ± 0.03	0.34 ± 0.03
30	398.15	0.9	0.90	15.0 ± 0.5	16.1	27.10	74.09	0.42 ± 0.03	0.38 ± 0.03
30	398.15	1.0	1.00	10.7 ± 0.1	11.4	-	83.15	-	-
30	423.15	0.0	1.00	37.9 ± 1.2	40.3	5.73	-	-	-
30	423.15	0.1	0.92	31.9 ± 1.0	34.6	7.00	25.47	0.24 ± 0.01	0.22 ± 0.01
30	423.15	0.2	0.85	28.5 ± 0.8	30.6	8.35	30.68	0.29 ± 0.01	0.24 ± 0.01
30	423.15	0.3	0.81	25.6 ± 0.4	27.8	9.84	36.51	0.33 ± 0.01	0.26 ± 0.01
30	423.15	0.4	0.78	24.2 ± 0.6	25.7	11.67	42.50	0.36 ± 0.01	0.28 ± 0.01
30	423.15	0.5	0.76	22.9 ± 0.4	23.9	13.77	49.00	0.38 ± 0.01	0.29 ± 0.01
30	423.15	0.6	0.77	22.3 ± 2.5	22.4	16.08	55.20	0.40 ± 0.01	0.31 ± 0.01
30	423.15	0.7	0.80	20.0 ± 0.4	20.9	19.04	63.55	0.43 ± 0.01	0.34 ± 0.01
30	423.15	0.8	0.84	18.4 ± 0.4	19.2	24.32	71.16	0.46 ± 0.04	0.39 ± 0.04
30	423.15	0.9	0.91	15.7 ± 1.1	16.7	29.57	81.57	0.43 ± 0.02	0.40 ± 0.01
30	423.15	1.0	1.00	11.7 ± 0.8	11.9	-	91.97	-	-
35	323.15	0.0	1.00	92.7 ± 0.8	91.3	1.73	-	-	-
35	323.15	0.1	0.70	66.8 ± 1.0	64.8	2.32	6.36	0.07 ± 0.01	0.05 ± 0.01
35	323.15	0.2	0.50	47.7 ± 0.5	47.7	3.15	9.27	0.10 ± 0.01	0.05 ± 0.01
35	323.15	0.3	0.38	35.1 ± 0.8	36.6	4.15	13.09	0.14 ± 0.01	0.05 ± 0.01
35	323.15	0.4	0.34	28.4 ± 1.2	29.4	5.38	17.37	0.17 ± 0.01	0.06 ± 0.01
35	323.15	0.5	0.35	22.9 ± 0.1	24.7	6.75	22.23	0.21 ± 0.01	0.07 ± 0.01
				Contin	nued on	next pag	ge		

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta \ / \ [\mu Pa$	as]	D^{self} /	$[10^{-8} m^2/s]$	D^{MS}	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H}_2}^{\mathrm{self}}$	$[10^{-6} m^2/s]$	$[10^{-6} {\rm m}^2/{\rm s}]$
35	323.15	0.6	0.42	20.0 ± 0.4	21.6	8.36	27.09	0.23 ± 0.01	0.10 ± 0.01
35	323.15	0.7	0.53	18.1 ± 0.9	19.1	10.25	32.85	0.24 ± 0.01	0.13 ± 0.01
35	323.15	0.8	0.67	15.6 ± 0.3	16.9	13.15	38.85	0.26 ± 0.01	0.17 ± 0.01
35	323.15	0.9	0.83	14.4 ± 1.1	14.6	17.05	44.87	0.26 ± 0.01	0.22 ± 0.01
35	323.15	1.0	1.00	10.2 ± 0.4	10.3	-	52.23	-	-
35	348.15	0.0	1.00	72.3 ± 1.2	73.3	2.35	-	-	-
35	348.15	0.1	0.77	52.5 ± 0.5	54.0	3.09	8.84	0.09 ± 0.01	0.07 ± 0.01
35	348.15	0.2	0.62	39.0 ± 0.3	41.5	4.09	12.72	0.13 ± 0.01	0.08 ± 0.01
35	348.15	0.3	0.52	34.3 ± 5.6	33.4	5.23	17.15	0.17 ± 0.01	0.09 ± 0.01
35	348.15	0.4	0.48	26.3 ± 0.6	28.0	6.55	21.82	0.20 ± 0.01	0.10 ± 0.01
35	348.15	0.5	0.49	23.2 ± 0.6	24.5	7.97	26.88	0.23 ± 0.01	0.11 ± 0.01
35	348.15	0.6	0.54	20.6 ± 1.2	21.7	9.73	31.98	0.25 ± 0.01	0.14 ± 0.01
35	348.15	0.7	0.62	18.4 ± 0.6	19.5	11.98	37.60	0.27 ± 0.01	0.17 ± 0.01
35	348.15	0.8	0.73	16.4 ± 0.5	17.5	14.85	44.16	0.28 ± 0.01	0.21 ± 0.01
35	348.15	0.9	0.86	13.9 ± 0.3	15.1	18.92	50.72	0.29 ± 0.01	0.25 ± 0.01
35	348.15	1.0	1.00	10.1 ± 0.1	10.7	-	58.28	-	-
35	373.15	0.0	1.00	59.4 ± 0.9	60.5	3.08	-	-	-
35	373.15	0.1	0.83	44.2 ± 0.6	46.5	3.99	12.33	0.12 ± 0.01	0.10 ± 0.01
35	373.15	0.2	0.71	35.3 ± 1.2	37.4	5.09	16.82	0.16 ± 0.01	0.11 ± 0.01
35	373.15	0.3	0.63	29.8 ± 1.5	31.4	6.31	21.49	0.20 ± 0.01	0.13 ± 0.01
35	373.15	0.4	0.60	25.5 ± 0.6	27.4	7.70	26.33	0.23 ± 0.01	0.14 ± 0.01
35	373.15	0.5	0.59	23.4 ± 1.2	24.4	9.21	31.61	0.26 ± 0.01	0.16 ± 0.01
35	373.15	0.6	0.63	20.7 ± 0.7	22.1	11.14	36.85	0.28 ± 0.01	0.18 ± 0.01
				Contin	nued on	next pag	ge		

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta \ / \ [\mu Pa$	as]	D^{self} /	$[10^{-8} m^2/s]$	D^{MS}	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H}_2}^{\mathrm{self}}$	$[10^{-6} m^2/s]$	$[10^{-6} {\rm m}^2/{\rm s}]$
35	373.15	0.7	0.69	19.4 ± 0.5	20.1	13.41	42.85	0.30 ± 0.01	0.21 ± 0.01
35	373.15	0.8	0.77	15.7 ± 1.6	18.1	16.69	49.43	0.32 ± 0.01	0.24 ± 0.01
35	373.15	0.9	0.88	14.3 ± 0.3	15.7	21.46	57.21	0.32 ± 0.01	0.28 ± 0.01
35	373.15	1.0	1.00	10.5 ± 0.2	11.2	-	65.08	-	-
35	398.15	0.0	1.00	49.2 ± 1.5	51.5	3.94	-	-	-
35	398.15	0.1	0.88	39.2 ± 1.2	41.5	5.02	16.51	0.16 ± 0.01	0.14 ± 0.01
35	398.15	0.2	0.78	32.6 ± 1.4	34.8	6.13	20.97	0.20 ± 0.01	0.16 ± 0.01
35	398.15	0.3	0.72	28.6 ± 0.2	30.4	7.46	25.44	0.24 ± 0.01	0.17 ± 0.01
35	398.15	0.4	0.68	25.2 ± 0.5	27.1	8.95	30.95	0.27 ± 0.01	0.18 ± 0.01
35	398.15	0.5	0.67	23.7 ± 0.4	24.6	10.57	35.95	0.34 ± 0.07	0.23 ± 0.05
35	398.15	0.6	0.69	23.7 ± 2.9	22.5	12.45	42.04	0.31 ± 0.01	0.21 ± 0.01
35	398.15	0.7	0.74	19.1 ± 0.4	20.7	15.05	47.83	0.34 ± 0.01	0.25 ± 0.01
35	398.15	0.8	0.80	17.8 ± 0.6	18.8	18.53	55.23	0.34 ± 0.01	0.27 ± 0.01
35	398.15	0.9	0.89	14.5 ± 0.2	16.3	24.37	64.02	0.36 ± 0.03	0.32 ± 0.03
35	398.15	1.0	1.00	11.1 ± 0.3	11.6	-	72.72	-	-
35	423.15	0.0	1.00	42.3 ± 1.1	45.5	4.96	-	-	-
35	423.15	0.1	0.91	36.1 ± 0.9	38.3	6.07	20.93	0.20 ± 0.01	0.19 ± 0.01
35	423.15	0.2	0.84	31.2 ± 0.7	33.3	7.27	25.62	0.24 ± 0.01	0.20 ± 0.01
35	423.15	0.3	0.78	27.6 ± 0.2	29.8	8.62	30.59	0.28 ± 0.01	0.22 ± 0.01
35	423.15	0.4	0.75	26.1 ± 1.1	27.1	10.13	35.72	0.31 ± 0.01	0.23 ± 0.01
35	423.15	0.5	0.73	23.4 ± 0.6	24.9	11.89	41.45	0.33 ± 0.01	0.24 ± 0.01
35	423.15	0.6	0.74	22.0 ± 0.5	23.1	14.15	47.47	0.35 ± 0.01	0.26 ± 0.01
35	423.15	0.7	0.77	19.6 ± 0.2	21.3	17.00	53.94	0.38 ± 0.03	0.29 ± 0.02
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$									

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	η / [$\mu { m Pa}$	as]	D^{self} /	$[10^{-8} m^2/s]$	$D^{ m MS}$	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H}_2}^{\mathrm{self}}$	$[10^{-6} \text{m}^2/\text{s}]$	$[10^{-6} {\rm m}^2/{\rm s}]$
35	423.15	0.8	0.82	18.0 ± 0.2	19.4	20.61	61.37	0.38 ± 0.01	0.32 ± 0.01
35	423.15	0.9	0.90	15.0 ± 0.1	16.9	26.38	70.79	0.38 ± 0.01	0.35 ± 0.01
35	423.15	1.0	1.00	11.2 ± 0.2	12.0	-	80.06	-	-
40	323.15	0.0	1.00	99.6 ± 1.2	97.3	1.63	-	-	-
40	323.15	0.1	0.71	72.2 ± 0.7	69.7	2.16	5.77	0.06 ± 0.01	0.04 ± 0.01
40	323.15	0.2	0.51	52.0 ± 0.2	51.7	2.84	8.02	0.09 ± 0.01	0.04 ± 0.01
40	323.15	0.3	0.39	38.7 ± 0.3	39.8	3.75	11.22	0.12 ± 0.01	0.05 ± 0.01
40	323.15	0.4	0.33	30.2 ± 0.2	31.8	4.77	15.00	0.16 ± 0.01	0.05 ± 0.01
40	323.15	0.5	0.34	24.5 ± 0.9	26.3	6.06	19.03	0.18 ± 0.01	0.06 ± 0.01
40	323.15	0.6	0.40	21.6 ± 1.1	22.5	7.50	23.75	0.21 ± 0.01	0.08 ± 0.01
40	323.15	0.7	0.50	18.4 ± 0.4	19.8	9.32	28.58	0.22 ± 0.01	0.11 ± 0.01
40	323.15	0.8	0.64	15.9 ± 0.2	17.4	11.87	33.79	0.23 ± 0.01	0.15 ± 0.01
40	323.15	0.9	0.81	13.5 ± 0.1	14.8	15.68	40.18	0.23 ± 0.01	0.19 ± 0.01
40	323.15	1.0	1.00	10.1 ± 0.1	10.5	-	46.22	-	-
40	348.15	0.0	1.00	79.4 ± 0.6	79.1	2.17	-	-	-
40	348.15	0.1	0.78	58.7 ± 0.6	58.8	2.81	7.94	0.08 ± 0.01	0.06 ± 0.01
40	348.15	0.2	0.62	44.2 ± 0.5	45.3	3.66	10.83	0.11 ± 0.01	0.07 ± 0.01
40	348.15	0.3	0.51	34.2 ± 0.5	36.2	4.69	14.57	0.14 ± 0.01	0.07 ± 0.01
40	348.15	0.4	0.47	28.5 ± 0.6	30.1	5.84	18.62	0.18 ± 0.01	0.08 ± 0.01
40	348.15	0.5	0.47	24.7 ± 0.6	25.7	7.13	23.10	0.20 ± 0.01	0.10 ± 0.01
40	348.15	0.6	0.51	21.1 ± 0.4	22.7	8.76	27.76	0.23 ± 0.01	0.12 ± 0.01
40	348.15	0.7	0.59	19.2 ± 0.5	20.2	10.72	32.92	0.25 ± 0.01	0.15 ± 0.01
40	348.15	0.8	0.70	16.6 ± 0.4	17.9	13.85	38.65	0.25 ± 0.01	0.17 ± 0.01
				Contin	nued on	next pag	ge		

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta \ / \ [\mu Pa$	as]	D^{self} /	$[10^{-8} m^2/s]$	D^{MS}	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H}_2}^{\mathrm{self}}$	$[10^{-6} m^2/s]$	$[10^{-6} {\rm m}^2/{\rm s}]$
40	348.15	0.9	0.84	14.2 ± 0.6	15.4	17.19	45.40	0.27 ± 0.01	0.23 ± 0.01
40	348.15	1.0	1.00	10.4 ± 0.3	10.9	-	52.01	-	-
40	373.15	0.0	1.00	63.7 ± 0.3	66.2	2.80	-	-	-
40	373.15	0.1	0.83	49.3 ± 0.2	51.0	3.58	10.61	0.11 ± 0.01	0.09 ± 0.01
40	373.15	0.2	0.70	39.0 ± 0.7	40.9	4.58	14.04	0.14 ± 0.01	0.10 ± 0.01
40	373.15	0.3	0.62	32.1 ± 0.2	33.9	5.66	18.23	0.18 ± 0.01	0.11 ± 0.01
40	373.15	0.4	0.58	28.0 ± 0.4	29.0	6.86	22.52	0.20 ± 0.01	0.12 ± 0.01
40	373.15	0.5	0.57	23.9 ± 0.5	25.7	8.30	27.54	0.23 ± 0.01	0.13 ± 0.01
40	373.15	0.6	0.60	21.7 ± 0.8	23.0	9.95	32.08	0.25 ± 0.01	0.15 ± 0.01
40	373.15	0.7	0.66	19.1 ± 0.5	20.7	12.38	37.44	0.27 ± 0.01	0.18 ± 0.01
40	373.15	0.8	0.75	17.5 ± 0.3	18.5	14.97	43.55	0.28 ± 0.01	0.21 ± 0.01
40	373.15	0.9	0.86	14.5 ± 0.7	15.9	19.55	50.88	0.29 ± 0.01	0.25 ± 0.01
40	373.15	1.0	1.00	10.7 ± 0.2	11.3	-	57.53	-	-
40	398.15	0.0	1.00	54.2 ± 0.8	56.9	3.56	-	-	-
40	398.15	0.1	0.87	43.0 ± 0.6	45.6	4.47	13.92	0.14 ± 0.01	0.12 ± 0.01
40	398.15	0.2	0.77	35.6 ± 0.5	37.9	5.50	17.71	0.17 ± 0.01	0.13 ± 0.01
40	398.15	0.3	0.70	30.7 ± 0.6	32.4	6.61	22.15	0.21 ± 0.01	0.14 ± 0.01
40	398.15	0.4	0.66	26.6 ± 0.4	28.7	8.00	26.72	0.23 ± 0.01	0.15 ± 0.01
40	398.15	0.5	0.65	24.6 ± 0.5	25.7	9.44	31.58	0.26 ± 0.01	0.17 ± 0.01
40	398.15	0.6	0.67	21.6 ± 0.4	23.3	11.33	36.82	0.28 ± 0.01	0.18 ± 0.01
40	398.15	0.7	0.71	20.0 ± 0.3	21.2	13.64	42.44	0.30 ± 0.01	0.21 ± 0.01
40	398.15	0.8	0.78	17.5 ± 0.4	19.1	16.77	48.52	0.31 ± 0.01	0.24 ± 0.01
40	398.15	0.9	0.88	15.5 ± 1.5	16.5	21.24	56.52	0.33 ± 0.01	0.29 ± 0.01
				Contin	nued on	next pag	ge		

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta / [\mu Pa$	as]	D^{self} /	$[10^{-8} \text{m}^2/\text{s}]$	D^{MS}	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H}_2}^{\mathrm{self}}$	$[10^{-6} m^2/s]$	$[10^{-6} {\rm m}^2/{\rm s}]$
40	398.15	1.0	1.00	11.1 ± 0.1	11.7	-	64.00	-	-
40	423.15	0.0	1.00	46.8 ± 0.6	50.3	4.38	-	-	-
40	423.15	0.1	0.90	39.6 ± 1.4	41.9	5.35	17.42	0.17 ± 0.01	0.15 ± 0.01
40	423.15	0.2	0.82	34.7 ± 2.1	35.9	6.45	21.57	0.21 ± 0.01	0.17 ± 0.01
40	423.15	0.3	0.76	30.0 ± 0.8	31.7	7.63	26.13	0.24 ± 0.01	0.18 ± 0.01
40	423.15	0.4	0.73	27.0 ± 0.8	28.5	9.05	30.92	0.27 ± 0.01	0.19 ± 0.01
40	423.15	0.5	0.71	24.4 ± 1.0	25.9	10.62	36.00	0.29 ± 0.01	0.21 ± 0.01
40	423.15	0.6	0.72	22.4 ± 0.3	23.8	12.66	41.39	0.31 ± 0.01	0.22 ± 0.01
40	423.15	0.7	0.75	20.4 ± 0.4	21.8	15.14	47.69	0.32 ± 0.01	0.24 ± 0.01
40	423.15	0.8	0.81	18.2 ± 0.3	19.7	18.51	54.32	0.34 ± 0.01	0.27 ± 0.01
40	423.15	0.9	0.89	16.1 ± 1.4	17.1	23.32	62.34	0.35 ± 0.01	0.31 ± 0.01
40	423.15	1.0	1.00	11.7 ± 0.7	12.1	-	70.81	-	-
45	323.15	0.0	1.00	106.0 ± 1.2	102.9	1.56	-	-	-
45	323.15	0.1	0.72	77.0 ± 0.5	74.3	2.01	5.29	0.05 ± 0.01	0.04 ± 0.01
45	323.15	0.2	0.52	57.7 ± 1.7	55.4	2.67	7.33	0.08 ± 0.01	0.04 ± 0.01
45	323.15	0.3	0.39	42.5 ± 0.3	42.7	3.45	9.97	0.11 ± 0.01	0.04 ± 0.01
45	323.15	0.4	0.33	32.7 ± 0.4	34.0	4.40	13.36	0.14 ± 0.01	0.05 ± 0.01
45	323.15	0.5	0.32	26.2 ± 0.3	27.9	5.50	16.91	0.17 ± 0.01	0.05 ± 0.01
45	323.15	0.6	0.37	21.9 ± 0.4	23.6	6.92	20.82	0.19 ± 0.01	0.07 ± 0.01
45	323.15	0.7	0.47	19.0 ± 0.1	20.4	8.54	25.43	0.21 ± 0.01	0.10 ± 0.01
45	323.15	0.8	0.61	17.0 ± 0.6	17.8	10.89	30.62	0.21 ± 0.01	0.13 ± 0.01
45	323.15	0.9	0.79	13.7 ± 0.5	15.1	14.12	36.20	0.21 ± 0.01	0.17 ± 0.01
45	323.15	1.0	1.00	10.2 ± 0.1	10.6	-	41.86	_	-
				Contin	nued on	next pag	ge		

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta \ / \ [\mu Pa]$	as]	D^{self} /	$[10^{-8} m^2/s]$	D^{MS}	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H}_2}^{\mathrm{self}}$	$[10^{-6} m^2/s]$	$[10^{-6} {\rm m}^2/{\rm s}]$
45	348.15	0.0	1.00	86.1 ± 1.2	84.5	2.02	-	-	-
45	348.15	0.1	0.78	63.3 ± 0.9	63.1	2.60	7.14	0.07 ± 0.01	0.06 ± 0.01
45	348.15	0.2	0.62	48.4 ± 0.6	48.7	3.35	9.69	0.10 ± 0.01	0.06 ± 0.01
45	348.15	0.3	0.51	38.3 ± 1.9	38.9	4.26	12.83	0.13 ± 0.01	0.06 ± 0.01
45	348.15	0.4	0.45	30.4 ± 0.2	32.0	5.33	16.38	0.16 ± 0.01	0.07 ± 0.01
45	348.15	0.5	0.45	25.4 ± 0.4	27.1	6.53	20.29	0.19 ± 0.01	0.08 ± 0.01
45	348.15	0.6	0.49	22.1 ± 0.4	23.5	8.01	24.75	0.21 ± 0.01	0.10 ± 0.01
45	348.15	0.7	0.56	19.5 ± 0.8	20.8	9.85	29.55	0.22 ± 0.01	0.12 ± 0.01
45	348.15	0.8	0.68	17.1 ± 0.4	18.3	12.34	34.71	0.23 ± 0.01	0.16 ± 0.01
45	348.15	0.9	0.82	14.3 ± 0.2	15.6	15.64	40.76	0.25 ± 0.01	0.20 ± 0.01
45	348.15	1.0	1.00	10.8 ± 0.4	11.0	-	47.17	-	-
45	373.15	0.0	1.00	70.1 ± 0.7	71.3	2.58	-	-	-
45	373.15	0.1	0.83	53.7 ± 0.5	55.1	3.29	9.48	0.10 ± 0.01	0.08 ± 0.01
45	373.15	0.2	0.70	42.3 ± 0.6	44.0	4.14	12.41	0.12 ± 0.01	0.09 ± 0.01
45	373.15	0.3	0.61	34.5 ± 0.4	36.3	5.16	16.10	0.15 ± 0.01	0.09 ± 0.01
45	373.15	0.4	0.56	29.0 ± 0.1	30.8	6.23	19.78	0.19 ± 0.01	0.11 ± 0.01
45	373.15	0.5	0.55	24.9 ± 0.4	26.8	7.62	24.15	0.20 ± 0.01	0.11 ± 0.01
45	373.15	0.6	0.57	22.7 ± 0.5	23.8	9.06	28.53	0.23 ± 0.01	0.13 ± 0.01
45	373.15	0.7	0.63	19.7 ± 0.3	21.2	11.03	33.26	0.25 ± 0.01	0.16 ± 0.01
45	373.15	0.8	0.73	17.6 ± 0.9	18.8	13.73	39.31	0.26 ± 0.01	0.19 ± 0.01
45	373.15	0.9	0.85	14.9 ± 0.8	16.1	17.57	45.52	0.27 ± 0.01	0.23 ± 0.01
45	373.15	1.0	1.00	10.7 ± 0.3	11.4	-	52.40	-	-
45	398.15	0.0	1.00	59.4 ± 0.7	61.7	3.24	_	-	-
Continued on next page									

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta / [\mu Pa$	as]	D^{self} /	$[10^{-8} \text{m}^2/\text{s}]$	D^{MS}	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H}_2}^{\mathrm{self}}$	$[10^{-6} m^2/s]$	$[10^{-6} {\rm m}^2/{\rm s}]$
45	398.15	0.1	0.87	47.0 ± 0.6	49.3	4.05	12.26	0.12 ± 0.01	0.10 ± 0.01
45	398.15	0.2	0.76	38.4 ± 0.5	40.7	4.98	15.57	0.15 ± 0.01	0.12 ± 0.01
45	398.15	0.3	0.69	33.5 ± 0.9	34.6	5.99	19.45	0.18 ± 0.01	0.12 ± 0.01
45	398.15	0.4	0.64	28.6 ± 0.5	30.1	7.23	23.32	0.21 ± 0.01	0.13 ± 0.01
45	398.15	0.5	0.63	25.0 ± 0.6	26.8	8.60	27.95	0.24 ± 0.01	0.15 ± 0.01
45	398.15	0.6	0.64	22.8 ± 0.7	24.1	10.35	32.55	0.26 ± 0.01	0.17 ± 0.01
45	398.15	0.7	0.69	20.9 ± 0.8	21.7	12.32	37.67	0.27 ± 0.01	0.18 ± 0.01
45	398.15	0.8	0.76	18.4 ± 0.7	19.4	15.25	43.90	0.29 ± 0.02	0.22 ± 0.01
45	398.15	0.9	0.87	15.7 ± 0.8	16.7	19.79	50.68	0.29 ± 0.01	0.25 ± 0.01
45	398.15	1.0	1.00	11.1 ± 0.1	11.8	-	58.25	-	-
45	423.15	0.0	1.00	51.7 ± 0.5	54.8	3.99	-	-	-
45	423.15	0.1	0.90	44.0 ± 1.6	45.3	4.81	15.08	0.15 ± 0.01	0.13 ± 0.01
45	423.15	0.2	0.81	36.2 ± 0.4	38.5	5.80	18.73	0.18 ± 0.01	0.15 ± 0.01
45	423.15	0.3	0.75	31.7 ± 0.5	33.5	6.93	22.95	0.21 ± 0.01	0.16 ± 0.01
45	423.15	0.4	0.71	29.9 ± 4.2	29.9	8.17	27.00	0.24 ± 0.01	0.17 ± 0.01
45	423.15	0.5	0.69	26.0 ± 0.9	27.0	9.76	31.82	0.26 ± 0.01	0.18 ± 0.01
45	423.15	0.6	0.70	22.8 ± 0.4	24.5	11.51	36.60	0.28 ± 0.01	0.19 ± 0.01
45	423.15	0.7	0.73	20.8 ± 1.2	22.3	13.77	41.91	0.29 ± 0.01	0.21 ± 0.01
45	423.15	0.8	0.79	18.3 ± 0.2	20.0	16.97	48.92	0.32 ± 0.01	0.25 ± 0.01
45	423.15	0.9	0.88	15.7 ± 0.2	17.3	21.67	55.98	0.32 ± 0.01	0.28 ± 0.01
45	423.15	1.0	1.00	11.7 ± 0.3	12.2	-	64.12	-	-
50	323.15	0.0	1.00	111.1 ± 1.3	108.3	1.48	-	-	-
50	323.15	0.1	0.73	82.8 ± 1.0	78.6	1.92	4.93	0.05 ± 0.01	0.04 ± 0.01
				Contir	nued on	next pag	ge		

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta \ / \ [\mu P \epsilon]$	as]	D^{self} /	$[10^{-8} m^2/s]$	D^{MS}	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H_2}}^{\mathrm{self}}$	$[10^{-6} m^2/s]$	$[10^{-6} {\rm m}^2/{\rm s}]$
50	323.15	0.2	0.52	61.5 ± 0.6	58.8	2.46	6.70	0.07 ± 0.01	0.04 ± 0.01
50	323.15	0.3	0.39	46.0 ± 0.6	45.4	3.20	9.01	0.10 ± 0.01	0.04 ± 0.01
50	323.15	0.4	0.32	35.0 ± 0.4	36.1	4.08	11.97	0.13 ± 0.01	0.04 ± 0.01
50	323.15	0.5	0.31	28.1 ± 0.5	29.5	5.10	15.22	0.16 ± 0.01	0.05 ± 0.01
50	323.15	0.6	0.35	23.7 ± 1.1	24.7	6.38	18.95	0.18 ± 0.01	0.06 ± 0.01
50	323.15	0.7	0.45	19.9 ± 0.5	21.1	7.92	22.88	0.19 ± 0.01	0.08 ± 0.01
50	323.15	0.8	0.59	17.1 ± 0.2	18.2	10.07	27.64	0.20 ± 0.01	0.12 ± 0.01
50	323.15	0.9	0.78	13.7 ± 0.6	15.3	12.91	32.79	0.20 ± 0.01	0.16 ± 0.01
50	323.15	1.0	1.00	10.4 ± 0.1	10.8	-	38.29	-	-
50	348.15	0.0	1.00	90.4 ± 1.0	89.5	1.94	-	-	-
50	348.15	0.1	0.78	68.5 ± 0.8	67.1	2.44	6.56	0.07 ± 0.01	0.05 ± 0.01
50	348.15	0.2	0.62	51.9 ± 1.2	51.9	3.12	8.78	0.09 ± 0.01	0.06 ± 0.01
50	348.15	0.3	0.50	40.3 ± 0.8	41.4	3.96	11.55	0.12 ± 0.01	0.06 ± 0.01
50	348.15	0.4	0.44	32.3 ± 0.2	34.0	4.90	14.80	0.14 ± 0.01	0.06 ± 0.01
50	348.15	0.5	0.43	27.5 ± 1.4	28.5	6.01	18.27	0.18 ± 0.01	0.08 ± 0.01
50	348.15	0.6	0.47	23.5 ± 1.2	24.5	7.37	22.14	0.19 ± 0.01	0.09 ± 0.01
50	348.15	0.7	0.54	20.0 ± 0.5	21.3	9.16	26.63	0.21 ± 0.01	0.12 ± 0.01
50	348.15	0.8	0.66	17.5 ± 0.5	18.7	11.47	31.72	0.22 ± 0.01	0.14 ± 0.01
50	348.15	0.9	0.81	14.5 ± 0.4	15.8	14.77	37.29	0.23 ± 0.01	0.19 ± 0.01
50	348.15	1.0	1.00	10.7 ± 0.1	11.2	-	42.80	-	-
50	373.15	0.0	1.00	74.9 ± 0.8	76.1	2.45	-	-	_
50	373.15	0.1	0.83	58.0 ± 0.7	58.9	3.08	8.63	0.09 ± 0.01	0.07 ± 0.01
50	373.15	0.2	0.69	45.4 ± 0.4	47.0	3.84	11.09	0.11 ± 0.01	0.08 ± 0.01
				Contin	nued on	next pag	çe		

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta \ / \ [\mu Pa]$	as]	D^{self} /	$[10^{-8} m^2/s]$	D^{MS}	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H}_2}^{\mathrm{self}}$	$[10^{-6} m^2/s]$	$[10^{-6} {\rm m}^2/{\rm s}]$
50	373.15	0.3	0.60	37.2 ± 0.8	38.6	4.72	14.24	0.14 ± 0.01	0.08 ± 0.01
50	373.15	0.4	0.54	31.2 ± 0.6	32.5	5.73	17.70	0.17 ± 0.01	0.09 ± 0.01
50	373.15	0.5	0.53	26.3 ± 0.3	28.0	7.01	21.60	0.19 ± 0.01	0.10 ± 0.01
50	373.15	0.6	0.55	22.9 ± 0.5	24.5	8.41	25.60	0.21 ± 0.01	0.12 ± 0.01
50	373.15	0.7	0.61	21.2 ± 0.8	21.8	10.26	30.47	0.23 ± 0.01	0.14 ± 0.01
50	373.15	0.8	0.71	17.7 ± 0.3	19.2	12.79	35.65	0.24 ± 0.01	0.17 ± 0.01
50	373.15	0.9	0.84	16.1 ± 1.4	16.4	16.06	41.70	0.25 ± 0.01	0.21 ± 0.01
50	373.15	1.0	1.00	11.1 ± 0.1	11.6	-	48.04	-	-
50	398.15	0.0	1.00	64.1 ± 1.1	66.2	3.02	-	-	-
50	398.15	0.1	0.86	50.9 ± 0.5	52.9	3.72	10.91	0.11 ± 0.01	0.09 ± 0.01
50	398.15	0.2	0.75	41.5 ± 0.6	43.5	4.56	13.79	0.13 ± 0.01	0.10 ± 0.01
50	398.15	0.3	0.67	34.5 ± 1.6	36.7	5.52	17.04	0.16 ± 0.01	0.11 ± 0.01
50	398.15	0.4	0.63	30.0 ± 0.5	31.6	6.62	20.88	0.19 ± 0.01	0.12 ± 0.01
50	398.15	0.5	0.61	26.6 ± 0.8	27.8	7.94	24.94	0.21 ± 0.01	0.13 ± 0.01
50	398.15	0.6	0.62	23.1 ± 0.3	24.9	9.52	29.53	0.23 ± 0.01	0.15 ± 0.01
50	398.15	0.7	0.67	20.3 ± 0.7	22.3	11.55	34.30	0.26 ± 0.01	0.17 ± 0.01
50	398.15	0.8	0.75	18.3 ± 0.1	19.8	14.14	39.61	0.26 ± 0.01	0.20 ± 0.01
50	398.15	0.9	0.86	16.3 ± 0.6	16.9	17.75	46.00	0.26 ± 0.01	0.23 ± 0.01
50	398.15	1.0	1.00	11.6 ± 0.2	11.9	-	53.02	-	-
50	423.15	0.0	1.00	57.3 ± 0.5	59.0	3.64	-	-	-
50	423.15	0.1	0.89	45.8 ± 0.5	48.5	4.45	13.54	0.13 ± 0.01	0.12 ± 0.01
50	423.15	0.2	0.80	39.0 ± 0.9	40.9	5.35	16.68	0.16 ± 0.01	0.13 ± 0.01
50	423.15	0.3	0.73	33.7 ± 0.6	35.4	6.39	20.24	0.19 ± 0.01	0.14 ± 0.01
				Contin	nued on	next pag	ge	·	

p	Т	x_{H_2}	$\Gamma^{\rm RFP}$	$\eta \ / \ [\mu P \epsilon$	as]	D^{self} /	$[10^{-8} m^2/s]$	D^{MS}	D^{Fick}
[MPa]	[K]			$\eta^{ m MD}$	$\eta^{\rm RFP}$	$D_{\rm CO_2}^{\rm self}$	$D_{\mathrm{H}_2}^{\mathrm{self}}$	$[10^{-6} \text{m}^2/\text{s}]$	$[10^{-6} m^2/s]$
50	423.15	0.4	0.69	29.9 ± 0.5	31.1	7.56	24.18	0.22 ± 0.01	0.15 ± 0.01
50	423.15	0.5	0.67	26.9 ± 0.7	28.0	8.93	28.63	0.24 ± 0.01	0.16 ± 0.01
50	423.15	0.6	0.68	23.9 ± 1.0	25.2	10.64	33.01	0.26 ± 0.01	0.18 ± 0.01
50	423.15	0.7	0.71	24.8 ± 6.0	22.8	12.79	38.12	0.27 ± 0.01	0.19 ± 0.01
50	423.15	0.8	0.78	18.8 ± 0.6	20.3	15.64	44.13	0.29 ± 0.01	0.22 ± 0.01
50	423.15	0.9	0.87	16.2 ± 0.7	17.4	19.87	50.83	0.30 ± 0.01	0.26 ± 0.01
50	423.15	1.0	1.00	12.1 ± 0.2	12.3	-	58.14	-	-

192

S10.3 Phase equilibria for CO₂-NaCl brine, H₂-NaCl brine, and

CO₂-H₂-NaCl systems

Table S4: Phase equilibria for CO₂-NaCl brine systems from CFCMC simulations^{24–26} for various pressures, temperatures, and NaCl concentrations (c_{NaCl} in units of mol NaCl/kg H₂O). Solubilities of CO₂ in the liquid-rich phase are denoted by x_{CO_2} , the water content in the gas-rich phase is denoted by $y_{\text{H}_2\text{O}}$, and the fugacity coefficients (ϕ) of the two species in the gas-rich phase are compared to the corresponding values from REFPROP (RFP)³. Fugacity coefficients from REFPROP for CO₂ and H₂O at a given pressure, and temperature are obtained at the gas-phase composition obtained from CFCMC simulations.

p	Т	$c_{ m NaCl}$	$x_{\rm CO_2}$ / [10 ⁻⁴]	$y_{\rm H_{2O}} / [10^{-4}]$	$\phi_{\rm CO_2}$		$\phi_{\mathrm{H_{2}O}}$	
[MPa]	[K]				CFCMC	RFP	CFCMC	RFP
5	323.15	0	102 ± 7	32 ± 3	0.81 ± 0.01	0.82	0.74 ± 0.01	0.60
5	423.15	0	63 ± 2	1294 ± 7	0.94 ± 0.00	0.93	0.76 ± 0.00	0.81
10	323.15	0	156 ± 7	30 ± 4	0.65 ± 0.01	0.64	0.49 ± 0.01	0.26
10	423.15	0	126 ± 3	745 ± 10	0.88 ± 0.00	0.87	0.68 ± 0.00	0.67
30	323.15	0	186 ± 5	39 ± 6	0.34 ± 0.00	0.33	0.14 ± 0.00	0.09
30	423.15	0	270 ± 4	458 ± 15	0.71 ± 0.00	0.69	0.41 ± 0.00	0.36
50	323.15	0	206 ± 12	33 ± 5	0.30 ± 0.00	0.29	0.10 ± 0.00	0.08
50	423.15	0	345 ± 10	428 ± 18	0.66 ± 0.00	0.63	0.29 ± 0.01	0.29
5	323.15	1	79 ± 5	31 ± 4	0.82 ± 0.01	0.82	0.75 ± 0.01	0.60
5	423.15	1	53 ± 2	1246 ± 7	0.93 ± 0.00	0.93	0.76 ± 0.00	0.81
10	323.15	1	126 ± 14	31 ± 6	0.66 ± 0.01	0.64	0.49 ± 0.01	0.26
10	423.15	1	102 ± 3	707 ± 10	0.88 ± 0.00	0.87	0.69 ± 0.00	0.67
30	323.15	1	145 ± 9	27 ± 5	0.34 ± 0.00	0.33	0.14 ± 0.00	0.09
30	423.15	1	218 ± 9	438 ± 19	0.71 ± 0.00	0.69	0.41 ± 0.00	0.36
50	323.15	1	166 ± 4	34 ± 3	0.29 ± 0.00	0.29	0.10 ± 0.00	0.08
			Co	ntinued on next	page			

p	Т	$c_{\rm NaCl}$	$x_{\rm CO_2} \ / \ [10^{-4}]$	$y_{\rm H_{2O}} / [10^{-4}]$	$\phi_{\rm CO_2}$		$\phi_{ m H_2O}$	
[MPa]	[K]				CFCMC	RFP	CFCMC	RFP
50	423.15	1	270 ± 8	400 ± 21	0.66 ± 0.00	0.63	0.30 ± 0.00	0.29
5	323.15	2	67 ± 5	31 ± 3	0.83 ± 0.00	0.82	0.76 ± 0.00	0.60
5	423.15	2	41 ± 2	1197 ± 6	0.94 ± 0.00	0.93	0.77 ± 0.00	0.81
10	323.15	2	95 ± 8	24 ± 4	0.65 ± 0.01	0.64	0.50 ± 0.01	0.26
10	423.15	2	83 ± 4	675 ± 9	0.87 ± 0.00	0.87	0.69 ± 0.00	0.67
30	323.15	2	117 ± 7	34 ± 7	0.34 ± 0.00	0.33	0.15 ± 0.00	0.09
30	423.15	2	175 ± 7	406 ± 5	0.71 ± 0.01	0.69	0.42 ± 0.01	0.36
50	323.15	2	129 ± 7	33 ± 6	0.29 ± 0.00	0.29	0.10 ± 0.00	0.08
50	423.15	2	218 ± 6	384 ± 16	0.66 ± 0.00	0.63	0.31 ± 0.00	0.29

Table S5: Phase equilibria for H₂-NaCl brine systems from CFCMC simulations^{24–26} for various pressures, temperatures, and NaCl concentrations (c_{NaCl} in units of mol NaCl/kg H₂O). Solubilities of H₂ in the liquid-rich phase is denoted by x_{H_2} , the water content in the gas-rich phase is denoted by $y_{\text{H}_2\text{O}}$, and the fugacity coefficients (ϕ) of the two species in the gas-rich phase are compared to the corresponding values from REFPROP (RFP)³. Fugacity coefficients from REFPROP for H₂ and H₂O at a given pressure, and temperature are obtained at the gas-phase composition obtained from CFCMC simulations.

p	Т	$c_{\rm NaCl}$	$x_{\rm H_2} / [10^{-4}]$	$y_{\rm H_{2O}} / [10^{-4}]$	ϕ_{H_2}		$\phi_{\mathrm{H_2O}}$	
[MPa]	[K]				CFCMC	RFP	CFCMC	RFP
5	323.15	0	7 ± 2	26 ± 4	1.02 ± 0.01	1.03	0.97 ± 0.01	0.96
5	423.15	0	11 ± 0	1185 ± 11	1.02 ± 0.00	1.02	0.83 ± 0.00	0.96
10	323.15	0	13 ± 2	12 ± 2	1.04 ± 0.01	1.06	0.97 ± 0.01	0.92
10	423.15	0	24 ± 1	609 ± 15	1.04 ± 0.00	1.05	0.84 ± 0.00	0.95
30	323.15	0	42 ± 5	4 ± 1	1.17 ± 0.01	1.19	1.01 ± 0.01	0.85
30	423.15	0	71 ± 3	213 ± 6	1.14 ± 0.01	1.15	0.89 ± 0.01	0.94
50	323.15	0	60 ± 6	3 ± 1	1.31 ± 0.00	1.34	1.08 ± 0.00	0.85
50	423.15	0	113 ± 5	134 ± 9	1.24 ± 0.01	1.26	0.95 ± 0.01	0.98
5	323.15	1	6 ± 1	25 ± 5	1.01 ± 0.01	1.03	0.96 ± 0.01	0.96
5	423.15	1	10 ± 1	1149 ± 5	1.02 ± 0.00	1.02	0.84 ± 0.00	0.96
10	323.15	1	12 ± 2	15 ± 2	1.05 ± 0.02	1.06	0.98 ± 0.02	0.92
10	423.15	1	20 ± 1	580 ± 7	1.04 ± 0.01	1.05	0.84 ± 0.00	0.95
30	323.15	1	33 ± 3	5 ± 1	1.16 ± 0.01	1.19	1.01 ± 0.00	0.85
30	423.15	1	62 ± 1	202 ± 6	1.14 ± 0.01	1.15	0.90 ± 0.00	0.94
50	323.15	1	54 ± 2	3 ± 1	1.30 ± 0.00	1.34	1.07 ± 0.00	0.85
50	423.15	1	96 ± 3	133 ± 3	1.24 ± 0.01	1.26	0.95 ± 0.00	0.98
5	323.15	2	5 ± 1	21 ± 2	1.02 ± 0.01	1.03	0.97 ± 0.01	0.96
			Сс	ontinued on nex	t page		·	

p	Т	$c_{ m NaCl}$	$x_{\rm H_2} / [10^{-4}]$	$y_{\rm H_{2O}} / [10^{-4}]$] ϕ_{H_2}		$\phi_{\mathrm{H_2O}}$	
[MPa]	[K]				CFCMC	RFP	CFCMC	RFP
5	423.15	2	9 ± 1	1095 ± 12	1.02 ± 0.00	1.02	0.84 ± 0.00	0.96
10	323.15	2	9 ± 2	14 ± 3	1.05 ± 0.00	1.06	0.98 ± 0.00	0.92
10	423.15	2	18 ± 1	561 ± 5	1.04 ± 0.00	1.05	0.85 ± 0.00	0.95
30	323.15	2	28 ± 3	5 ± 2	1.17 ± 0.01	1.19	1.02 ± 0.01	0.85
30	423.15	2	55 ± 3	197 ± 7	1.14 ± 0.00	1.15	0.90 ± 0.00	0.95
50	323.15	2	47 ± 6	2 ± 3	1.30 ± 0.01	1.34	1.08 ± 0.01	0.85
50	423.15	2	81 ± 2	125 ± 4	1.25 ± 0.01	1.26	0.97 ± 0.00	0.98

p [MPa]	T [K]	$c_{\rm NaCl}$	$x_{\rm H_2} / [10^{-4}]$	$x_{\rm CO_2}$ / [10 ⁻⁴]	$y_{\rm H_2}$ / [10 ⁻⁴]	$y_{\rm H_{2O}} / [10^{-4}]$
5	323.15	0	49 ± 9	4 ± 1	5029 ± 8	33 ± 4
5	348.15	0	43 ± 3	3 ± 0	4997 ± 4	86 ± 8
5	373.15	0	34 ± 2	4 ± 0	4906 ± 3	246 ± 9
5	398.15	0	33 ± 1	5 ± 0	4726 ± 7	601 ± 13
5	423.15	0	34 ± 2	6 ± 1	4394 ± 5	1258 ± 9
10	323.15	0	89 ± 7	7 ± 0	5074 ± 8	20 ± 3
10	348.15	0	73 ± 7	9 ± 1	5038 ± 10	54 ± 8
10	373.15	0	63 ± 2	9 ± 3	4983 ± 8	143 ± 11
10	398.15	0	60 ± 4	11 ± 1	4882 ± 13	333 ± 21
10	423.15	0	64 ± 2	13 ± 1 4702 ± 10		690 ± 23
30	323.15	0	138 ± 8	23 ± 4	5115 ± 9	13 ± 5
30	348.15	0	135 ± 10	28 ± 4	5097 ± 10	31 ± 4
30	373.15	0	133 ± 5	30 ± 5	5072 ± 10	70 ± 9
30	398.15	0	132 ± 8	35 ± 2	5021 ± 7	158 ± 3
30	423.15	0	140 ± 3	44 ± 4	4942 ± 10	309 ± 19
50	323.15	0	143 ± 8	49 ± 2	5092 ± 9	16 ± 2
50	348.15	0	149 ± 3	46 ± 2	5093 ± 6	32 ± 5
50	373.15	0	154 ± 7	51 ± 2	5078 ± 13	62 ± 11
50	398.15	0	164 ± 4	59 ± 4	5044 ± 5	134 ± 8
50	423.15	0	188 ± 5	73 ± 4	4996 ± 6	249 ± 7
			Continued	l on next page		

Table S6: Phase equilibria for H₂-CO₂-NaCl brine systems from CFCMC simulations^{24–26} for various pressures, temperatures, and NaCl concentrations (c_{NaCl} in units of mol NaCl/kg H₂O). Solubilities of H₂ and CO₂ in the liquid-rich phase are denoted by x_{H_2} and x_{CO_2} , respectively, and the water content in the gas-rich phase is denoted by $y_{\text{H}_2\text{O}}$.

p [MPa]	T [K]	$c_{\rm NaCl}$	$x_{\rm H_2} / [10^{-4}]$	$x_{\rm CO_2}$ / [10 ⁻⁴]	$y_{\rm H_2} \ / \ [10^{-4}]$	$y_{\rm H_{2}O} \ / \ [10^{-4}]$
5	323.15	1	42 ± 4	3 ± 1	5023 ± 4	32 ± 5
5	348.15	1	33 ± 4	3 ± 1	4982 ± 6	96 ± 7
5	373.15	1	29 ± 3	4 ± 1	4905 ± 2	237 ± 5
5	398.15	1	27 ± 1	5 ± 1	4736 ± 6	570 ± 12
5	423.15	1	26 ± 0	5 ± 1	4417 ± 9	1201 ± 16
10	323.15	1	69 ± 14	8 ± 3	5053 ± 19	20 ± 3
10	348.15	1	60 ± 6	7 ± 1	5029 ± 7	49 ± 6
10	373.15	1	53 ± 4	8 ± 1	4974 ± 6	142 ± 7
10	398.15	1	50 ± 3	11 ± 2	4882 ± 5	312 ± 9
10	423.15	1	49 ± 2	11 ± 1	4704 ± 5	662 ± 9
30	323.15	1	112 ± 13	22 ± 2	5087 ± 15	13 ± 4
30	348.15	1	98 ± 3	08 ± 3 24 ± 5 5061 ± 4		32 ± 3
30	373.15	1	102 ± 4	29 ± 4	5041 ± 6	67 ± 5
30	398.15	1	105 ± 4	32 ± 3	4998 ± 6	152 ± 6
30	423.15	1	112 ± 7	38 ± 2	4926 ± 8	297 ± 4
50	323.15	1	120 ± 6	37 ± 6	5080 ± 9	13 ± 3
50	348.15	1	116 ± 4	39 ± 4	5069 ± 2	25 ± 3
50	373.15	1	121 ± 5	46 ± 5	5049 ± 10	60 ± 4
50	398.15	1	141 ± 7	53 ± 4	5029 ± 6	127 ± 10
50	423.15	1	148 ± 5	60 ± 6	4976 ± 12	230 ± 7
5	323.15	2	32 ± 2	3 ± 2	5015 ± 4	28 ± 4
5	348.15	2	28 ± 3	3 ± 1	4981 ± 2	87 ± 6
5	373.15	2	25 ± 2	3 ± 1	4907 ± 8	229 ± 16
5	398.15	2	22 ± 1	4 ± 1	4738 ± 3	558 ± 4
			Continued	l on next page		

p [MPa]	T [K]	$c_{\rm NaCl}$	$x_{\rm H_2} / [10^{-4}]$	$x_{\rm CO_2}$ / $[10^{-4}]$	$y_{\rm H_2}$ / [10 ⁻⁴]	$y_{\rm H_{2O}} / [10^{-4}]$
5	423.15	2	22 ± 1	4 ± 1	4436 ± 12	1156 ± 23
10	323.15	2	51 ± 3	6 ± 2	5040 ± 3	14 ± 5
10	348.15	2	41 ± 6	7 ± 1	5008 ± 6	54 ± 7
10	373.15	2	45 ± 5	6 ± 1	4978 ± 11	122 ± 14
10	398.15	2	40 ± 3	7 ± 1	4878 ± 7	308 ± 10
10	423.15	2	39 ± 4	10 ± 1	4708 ± 6	638 ± 8
30	323.15	2	90 ± 8	19 ± 5	5067 ± 11	13 ± 4
30	348.15	2	84 ± 8	18 ± 3	5053 ± 10	28 ± 7
30	373.15	2	86 ± 9	20 ± 2	5032 ± 8	70 ± 4
30	398.15	2	89 ± 7	26 ± 3	4991 ± 8	146 ± 8
30	423.15	2	90 ± 5	32 ± 3	4913 ± 8	291 ± 10
50	323.15	2	99 ± 6	35 ± 7	5062 ± 13	11 ± 5
50	348.15	2	100 ± 5	33 ± 5	5053 ± 8	33 ± 4
50	373.15	2	98 ± 4	37 ± 1	5034 ± 6	57 ± 9
50	398.15	2	108 ± 9	45 ± 3	5003 ± 13	125 ± 10
50	423.15	2	119 ± 6	52 ± 2	4958 ± 14	220 ± 17

p	Т	$c_{\rm NaCl}$	ϕ_{H_2}		$\phi_{ m CO_2}$		$\phi_{\mathrm{H_2O}}$	
[MPa]	[K]		CFCMC	RFP	CFCMC	RFP	CFCMC	RFP
5	323.15	0	0.87 ± 0.01	0.86	1.06 ± 0.01	1.07	0.83 ± 0.01	0.86
5	348.15	0	0.89 ± 0.01	0.89	1.04 ± 0.01	1.06	0.84 ± 0.01	0.89
5	373.15	0	0.92 ± 0.01	0.91	1.04 ± 0.01	1.06	0.83 ± 0.01	0.90
5	398.15	0	0.93 ± 0.01	0.93	1.03 ± 0.01	1.06	0.81 ± 0.01	0.91
5	423.15	0	0.95 ± 0.01	0.94	1.04 ± 0.01	1.06	0.78 ± 0.01	0.91
10	323.15	0	0.77 ± 0.01	0.75	1.13 ± 0.01	1.16	0.71 ± 0.01	0.75
10	348.15	0	0.81 ± 0.01	0.80	1.11 ± 0.01	1.13	0.75 ± 0.01	0.79
10	373.15	0	0.85 ± 0.01	0.84	1.09 ± 0.01	1.12	0.76 ± 0.01	0.83
10	398.15	0	0.88 ± 0.01	0.87	1.08 ± 0.01	1.11	0.75 ± 0.01	0.85
10	423.15	0	0.91 ± 0.01	0.89	1.08 ± 0.01	1.10	0.73 ± 0.01	0.86
30	323.15	0	0.52 ± 0.01	0.49	1.46 ± 0.02	1.50	0.41 ± 0.01	0.48
30	348.15	0	0.61 ± 0.01	0.58	1.38 ± 0.02	1.42	0.50 ± 0.01	0.56
30	373.15	0	0.70 ± 0.01	0.66	1.33 ± 0.01	1.36	0.56 ± 0.01	0.63
30	398.15	0	0.76 ± 0.01	0.72	1.29 ± 0.01	1.32	0.59 ± 0.01	0.68
30	423.15	0	0.81 ± 0.01	0.77	1.26 ± 0.01	1.29	0.59 ± 0.01	0.71
50	323.15	0	0.44 ± 0.01	0.42	1.77 ± 0.03	1.81	0.29 ± 0.01	0.38
50	348.15	0	0.55 ± 0.01	0.52	1.65 ± 0.01	1.69	0.38 ± 0.01	0.47
50	373.15	0	0.64 ± 0.01	0.60	1.56 ± 0.01	1.60	0.44 ± 0.01	0.54
50	398.15	0	0.72 ± 0.01	0.68	1.51 ± 0.01	1.54	0.49 ± 0.01	0.60
			Contin	ued on	next page			

Table S7: The fugacity coefficients (ϕ) of all species in the gas-rich phase obtained from CFCMC simulations^{24–26} are compared to the corresponding values from REFPROP (RFP). Fugacity coefficients from REFPROP for H₂, CO₂ and H₂O at given pressure, and temperature are obtained at the gas-phase composition obtained from CFCMC simulations.

p	Т	$c_{\rm NaCl}$	ϕ_{H_2}		$\phi_{\rm CO_2}$		$\phi_{\mathrm{H_2O}}$	
[MPa]	[K]		CFCMC	RFP	CFCMC	RFP	CFCMC	RFP
50	423.15	0	0.79 ± 0.01	0.74	1.45 ± 0.01	1.48	0.51 ± 0.01	0.65
5	323.15	1	0.87 ± 0.01	0.86	1.06 ± 0.01	1.07	0.83 ± 0.01	0.86
5	348.15	1	0.89 ± 0.01	0.89	1.04 ± 0.01	1.06	0.84 ± 0.01	0.89
5	373.15	1	0.91 ± 0.01	0.91	1.03 ± 0.01	1.06	0.83 ± 0.01	0.90
5	398.15	1	0.93 ± 0.01	0.93	1.04 ± 0.01	1.05	0.82 ± 0.01	0.91
5	423.15	1	0.95 ± 0.01	0.94	1.04 ± 0.01	1.06	0.78 ± 0.01	0.91
10	323.15	1	0.76 ± 0.01	0.75	1.12 ± 0.02	1.16	0.70 ± 0.01	0.75
10	348.15	1	0.82 ± 0.01	0.80	1.11 ± 0.01	1.13	0.75 ± 0.01	0.79
10	373.15	1	0.86 ± 0.01	0.84	1.11 ± 0.01	1.12	0.77 ± 0.01	0.83
10	398.15	1	0.88 ± 0.01	0.87	1.08 ± 0.01	1.11	0.76 ± 0.01	0.85
10	423.15	1	0.91 ± 0.01	0.89	1.09 ± 0.01	1.10	0.74 ± 0.01	0.86
30	323.15	1	0.52 ± 0.01	0.49	1.47 ± 0.01	1.51	0.41 ± 0.01	0.47
30	348.15	1	0.61 ± 0.01	0.58	1.39 ± 0.01	1.43	0.50 ± 0.01	0.56
30	373.15	1	0.69 ± 0.01	0.65	1.33 ± 0.01	1.37	0.56 ± 0.01	0.62
30	398.15	1	0.76 ± 0.01	0.72	1.29 ± 0.01	1.33	0.59 ± 0.01	0.68
30	423.15	1	0.82 ± 0.01	0.77	1.27 ± 0.01	1.30	0.60 ± 0.01	0.71
50	323.15	1	0.44 ± 0.01	0.42	1.78 ± 0.01	1.81	0.29 ± 0.01	0.38
50	348.15	1	0.54 ± 0.01	0.51	1.66 ± 0.01	1.70	0.38 ± 0.01	0.46
50	373.15	1	0.64 ± 0.01	0.60	1.57 ± 0.01	1.61	0.45 ± 0.01	0.54
50	398.15	1	0.72 ± 0.01	0.68	1.50 ± 0.01	1.54	0.49 ± 0.01	0.60
50	423.15	1	0.79 ± 0.01	0.74	1.45 ± 0.01	1.49	0.51 ± 0.01	0.65
5	323.15	2	0.86 ± 0.01	0.86	1.05 ± 0.01	1.07	0.82 ± 0.01	0.86
5	348.15	2	0.89 ± 0.01	0.89	1.05 ± 0.01	1.06	0.84 ± 0.01	0.89
			Contin	ued on	next page			

p	Т	$c_{ m NaCl}$	ϕ_{H_2}		$\phi_{\rm CO_2}$		$\phi_{\mathrm{H_2O}}$	
[MPa]	[K]		CFCMC	RFP	CFCMC	RFP	CFCMC	RFP
5	373.15	2	0.91 ± 0.01	0.91	1.04 ± 0.01	1.06	0.84 ± 0.01	0.90
5	398.15	2	0.93 ± 0.01	0.93	1.04 ± 0.01	1.05	0.82 ± 0.01	0.91
5	423.15	2	0.95 ± 0.01	0.94	1.04 ± 0.01	1.06	0.79 ± 0.01	0.91
10	323.15	2	0.76 ± 0.01	0.75	1.13 ± 0.01	1.16	0.71 ± 0.01	0.75
10	348.15	2	0.82 ± 0.01	0.80	1.12 ± 0.01	1.13	0.76 ± 0.01	0.79
10	373.15	2	0.85 ± 0.01	0.84	1.10 ± 0.01	1.12	0.77 ± 0.01	0.83
10	398.15	2	0.88 ± 0.01	0.87	1.09 ± 0.01	1.11	0.76 ± 0.01	0.85
10	423.15	2	0.91 ± 0.01	0.89	1.08 ± 0.01	1.10	0.74 ± 0.01	0.86
30	323.15	2	0.52 ± 0.01	0.49	1.48 ± 0.01	1.51	0.41 ± 0.01	0.47
30	348.15	2	0.62 ± 0.01	0.58	1.39 ± 0.01	1.43	0.50 ± 0.01	0.56
30	373.15	2	0.69 ± 0.01	0.65	1.33 ± 0.02	1.37	0.56 ± 0.01	0.62
30	398.15	2	0.76 ± 0.01	0.72	1.29 ± 0.01	1.33	0.60 ± 0.01	0.68
30	423.15	2	0.81 ± 0.01	0.77	1.26 ± 0.01	1.30	0.60 ± 0.01	0.71
50	323.15	2	0.44 ± 0.01	0.42	1.77 ± 0.01	1.82	0.29 ± 0.01	0.38
50	348.15	2	0.54 ± 0.01	0.51	1.66 ± 0.01	1.70	0.37 ± 0.01	0.46
50	373.15	2	0.63 ± 0.01	0.60	1.57 ± 0.01	1.61	0.45 ± 0.01	0.54
50	398.15	2	0.72 ± 0.01	0.67	1.50 ± 0.01	1.54	0.49 ± 0.01	0.60
50	423.15	2	0.78 ± 0.01	0.74	1.45 ± 0.01	1.49	0.52 ± 0.01	0.65

¹⁹³ Bibliography

- S1 Martyna, G. J.; Klein, M. L.; Tuckerman, M. Nosé-Hoover chains: The canonical ensemble via continuous dynamics. J. Chem. Phys. 1992, 97, 2635.
- S2 Kamberaj, H.; Low, R. J.; Neal, M. P. Time reversible and symplectic integrators for
 molecular dynamics simulations of rigid molecules. J. Chem. Phys. 2005, 122, 224114.
- S3 Lemmon, E. W.; Huber, M. L.; McLinden, M. O. NIST reference fluid thermodynamic
 and transport properties-REFPROP. *NIST standard reference database* 2002, 23.
- S4 Jamali, S. H.; Wolff, L.; Becker, T. M.; De Groen, M.; Ramdin, M.; Hartkamp, R.;
 Bardow, A.; Vlugt, T. J. H.; Moultos, O. A. OCTP: A tool for on-the-fly calculation
 of transport properties of fluids with the order-n algorithm in LAMMPS. J. Chem. Inf.
 Model. 2019, 59, 1290–1294.
- S5 Frenkel, D.; Smit, B. Understanding Molecular Simulation, From Algorithms to Applications, 3rd ed.; Elsevier Science, Oxford, 2023.
- S6 Allen, M. P.; Tildesley, D. Computer Simulation of Liquids, 2nd ed.; Oxford University
 Press, Oxford, 2017.
- S7 Yeh, I. C.; Hummer, G. System-size dependence of diffusion coefficients and viscosities
 from molecular dynamics simulations with periodic boundary conditions. J. Phys. Chem.
 B 2004, 108, 15873.
- S8 Celebi, A. T.; Jamali, S. H.; Bardow, A.; Vlugt, T. J. H.; Moultos, O. A. Finite-size
 effects of diffusion coefficients computed from molecular dynamics: a review of what we
 have learned so far. *Mol. Sim.* 2021, 47, 831–845.
- S9 Moultos, O. A.; Zhang, Y.; Tsimpanogiannis, I. N.; Economou, I. G.; Maginn, E. J.
 System-Size Corrections for the Self-Diffusion Coefficients Calculated from Molecular

- ²¹⁶ Dynamics Simulations: The Case of CO₂, n-Alkanes, and poly(ethylene glycol) dimen-²¹⁷ thyl ethers. J. Chem. Phys. **2016**, 145, 074109.
- S10 Cussler, E. L. *Diffusion: Mass transfer in fluid systems*, 3rd ed.; Cambridge University
 press, Cambridge, 2009.
- S11 Barrat, J.-L.; Hansen, J.-P. Basic Concepts for Simple and Complex Liquids, 1st ed.;
 Cambridge University Press, Cambridge, 2003.
- S12 Taylor, R.; Kooijman, H. A. Composition derivatives of activity coefficient models (for
 the estimation of thermodynamic factors in diffusion). *Chem. Eng. Commun.* 1991,
 102, 87–106.
- S13 Taylor, R.; Krishna, R. Multicomponent Mass Transfer, 1st ed.; John Wiley & Sons,
 New York, 1993.
- S14 Liu, X.; Schnell, S. K.; Simon, J.-M.; Bedeaux, D.; Kjelstrup, S.; Bardow, A.; Vlugt, T.
 J. H. Fick Diffusion Coefficients of Liquid Mixtures Directly Obtained from Equilibrium
 Molecular Dynamics. J. Phys. Chem. B 2011, 115, 12921.
- S15 Liu, X.; Martín-Calvo, A.; McGarrity, E.; Schnell, S. K.; Calero, S.; Simon, J.-M.;
 Bedeaux, D.; Kjelstrup, S.; Bardow, A.; Vlugt, T. J. H. Fick Diffusion Coefficients in
 Ternary Liquid Systems from Equilibrium Molecular Simulations. *Ind. Eng. Chem. Res.*2012, 51, 10247.
- ²³⁴ S16 Liu, X.; Schnell, S. K.; Simon, J.-M.; Krüger, P.; Bedeaux, D.; Kjelstrup, S.; Bardow, A.;
- Vlugt, T. J. H. Diffusion Coefficients from Molecular Dynamics Simulations in Binary
 and Ternary Mixtures. Int. J. Thermophys. 2013, 34, 1169.
- 237 S17 Jamali, S. H.; Wolff, L.; Becker, T. M.; Bardow, A.; Vlugt, T. J. H.; Moultos, O. A.
- Finite-Size Effects of Binary Mutual Diffusion Coefficients from Molecular Dynamics.
 J. Chem. Theory Comput. 2018, 14, 2667.
- S18 Potoff, J. J.; Siepmann, J. I. Vapor-liquid Equilibria of Mixtures Containing Alkanes,
 Carbon Dioxide and Nitrogen. AIChE J. 2001, 47, 1676.
- S19 Marx, D.; Nielaba, P. Path-integral Monte Carlo techniques for rotational motion in
 two dimensions: Quenched, annealed, and no-spin quantum-statistical averages. *Phys. Rev. A* 1992, 45, 8968–8971.
- ²⁴⁵ S20 Rahbari, A.; Brenkman, J.; Hens, R.; Ramdin, M.; van den Broeke, L. J. P.; Schoon, R.;
- Henkes, R.; Moultos, O. A.; Vlugt, T. J. H. Solubility of Water in Hydrogen at High
 Pressures: A Molecular Simulation Study. J. Chem. Eng. Data 2019, 64, 4103.
- S21 Rahbari, A.; Garcia-Navarro, J. C.; Ramdin, M.; van den Broeke, L. J. P.; Moultos, O. A.; Dubbeldam, D.; Vlugt, T. J. H. Effect of water content on thermodynamic
 properties of compressed hydrogen. J. Chem. Eng. Data 2021, 66, 2071.
- S22 Zeron, I. M.; Abascal, J. L. F.; Vega, C. A force field of Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺,
 Cl⁻, and SO₄²⁻ in aqueous solution based on the TIP4P/2005 water model and scaled
 charges for the ions. J. Chem. Phys. 2019, 151.
- S23 van Rooijen, W. A.; Habibi, P.; Xu, K.; Dey, P.; Vlugt, T. J. H.; Hajibeygi, H.;
 Moultos, O. A. Interfacial Tensions, Solubilities, and Transport Properties of the
 H₂/H₂O/NaCl System: A Molecular Simulation Study. J. Chem. Eng. Data 2024,
 69, 307–319.
- S24 Hens, R.; Rahbari, A.; Caro-Ortiz, S.; Dawass, N.; Erdős, M.; Poursaeidesfahani, A.;
 Salehi, H. S.; Celebi, A. T.; Ramdin, M.; Moultos, O. A.; Dubbeldam, D.; Vlugt, T.
 J. H. Brick-CFCMC: Open source software for Monte Carlo simulations of phase and

- reaction equilibria using the Continuous Fractional Component method. J. Chem. Inf.
 Model. 2020, 60, 2678–2682.
- S25 Polat, H. M.; Salehi, H. S.; Hens, R.; Wasik, D. O.; Rahbari, A.; De Meyer, F.;
 Houriez, C.; Coquelet, C.; Calero, S.; Dubbeldam, D.; ; Moultos, O. A.; Vlugt, T. J. H.
 New features of the open source Monte Carlo software Brick-CFCMC: Thermodynamic
 integration and hybrid trial moves. J. Chem. Inf. Model. 2021, 61, 3752–3757.
- 267 S26 Rahbari, A.; Hens, R.; Ramdin, M.; Moultos, O. A.; Dubbeldam, D.; Vlugt, T. J. H.
- Recent advances in the continuous fractional component Monte Carlo methodology.
- 269 Mol. Sim. **2021**, 47, 804–823.