Supplementary Materials

Application of thermodynamics at different scales to describe the behaviour of fast reacting binary mixtures in vapour-liquid equilibrium

Silvia Lasala^{1,*}, Konstantin Samukov¹, H. Mert Polat², Véronique Lachet³, Olivier Herbinet¹, Romain Privat¹, Jean-Noël Jaubert¹, Othonas A. Moultos², Kevin De Ras⁴, and Thijs J. H. Vlugt^{2,**}.

Corresponding authors:

- * silvia.lasala@univ-lorraine.fr
- ** t.j.h.vlugt@tudelft.nl

S1. Calculation of $\Delta_R G$, the Gibbs energy of reaction

Let us recall that $\Delta_R G$ is defined by eq. **Error! Reference source not found.** reported in the main text. In this study, the chemical potential of component i, \overline{g}_i , has been expressed in terms of both a pure-component ideal-gas contribution under the standard pressure $P^\circ = 1$ bar $(G_{i, \text{ pure ideal gas}}^\circ(T))$ – classically called a reference state – and a second contribution involving the fugacity \hat{f}_i of component i:

$$\overline{g}_i = G_{i, \text{ pure ideal gas}}^{\circ}(T) + RT \ln \frac{\hat{f}_i}{P^{\circ}}$$
(S1)

Eq. Error! Reference source not found., in the main text, thus writes:

$$\Delta_{R}G = \Delta_{R}G^{\circ}(T) + RT \ln \mathbf{P} \quad \text{with:} \begin{cases} \Delta_{R}G^{\circ}(T) = \sum_{i=A,B} \mathbf{v}_{i} \cdot G_{i, \text{ pure ideal gas}}^{\circ}(T) \\ \mathbf{P} = \prod_{i=A,B} \left(\frac{\hat{f}_{i}}{P^{\circ}}\right)^{\mathbf{v}_{i}} \end{cases}$$
(S2)

The reaction equilibrium constant (K) is related to $\Delta_R G^{\circ}(T)$ by its definition:

$$\ln K(T) \triangleq -\frac{\Delta_R G^{\circ}(T)}{RT} \tag{S3}$$

¹ Université de Lorraine, CNRS, LRGP, F-54000 Nancy, France.

² Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands.

³ IFP Energies nouvelles, 1 et 4 avenue de Bois-Préau, 92852 Rueil-Malmaison, France.

⁴ Ghent University, Laboratory for Chemical Technology (LCT), Technologiepark 125, B-9052 Ghent, Belgium.

As a direct consequence, the numerical value of K is dictated by the choice of the reference state used to express the chemical potential (the pure ideal gas under standard pressure was chosen here). Finally, eq. (S2) becomes:

$$\Delta_R G = -RT \ln \left(\frac{K}{\mathcal{P}} \right) \tag{S4}$$

and eq. Error! Reference source not found. writes:

$$K - \mathcal{P} = 0 \tag{S5}$$

As shown in eqs. (S6)-(S7), it is important to recall that $\Delta_R G^{\circ}(T)$ can be straightforwardly calculated from the knowledge of the ideal gas standard enthalpy of formation at 298.15 K ($\Delta_f H_{i,298.15K}^{\circ}$), the ideal gas standard molar entropy ($S_{i,298.15K}^{\circ}$) and the ideal gas heat capacity ($c_{p,i}^{ig}(T)$) of each species. A key point is that all these properties can be obtained at the atomic level using ab-initio calculations.

$$\Delta_R G^{\circ}(T) = \Delta_R H^{\circ}(T) - T\Delta_R S^{\circ}(T) \tag{S6}$$

with:
$$\begin{cases} \Delta_{R}H^{\circ}(T) = \sum_{i=A,B} \mathbf{v}_{i} \cdot \Delta_{f}H_{i,298.15K}^{\circ} + \int_{298.15}^{T} \left(\sum_{i=A,B} \mathbf{v}_{i} \cdot c_{p,i}^{ig}(T)\right) dT \\ \Delta_{R}S^{\circ} = \sum_{i=A,B} \mathbf{v}_{i} \cdot S_{i,298.15K}^{\circ} + \int_{298.15}^{T} \left(\sum_{i=A,B} \mathbf{v}_{i} \cdot \frac{c_{p,i}^{ig}(T)}{T}\right) dT \end{cases}$$
(S7)

On the other hand, \nearrow has to be calculated with an equation of state (EoS).

S2. Results from Quantum Mechanics calculations

Table S1. Force field parameters for NO2 and N2O4 used in this work.

	0		
Atom	σ [Å]	ε/k [K]	q [e]
$N_N_2O_4$	3.24	50.36	0.588
$O_N_2O_4$	2.93	62.51	-0.294
N_NO_2	3.24	50.36	0.146
O_NO_2	2.93	62.51	-0.073

Table S2. Optimal coordinates of the molecule NO2. QM (Gaussian) result obtained in this work.

Atom	X	у	Z
O_NO_2	-0.4971	1.7461	-0.4984
N_NO_2	0.2256	0.7842	-0.4984
O_NO_2	1.42	0.6393	-0.4984

Table S3. Optimal coordinates of the molecule N₂O₄. QM (Gaussian) result obtained in this work.

Atom	X	y	Z
$O_N_2O_4$	0	-1.104	1.3516
$\mathrm{N}_{-}\mathrm{N}_{2}\mathrm{O}_{4}$	0	0	0.891
$O_N_2O_4$	0	1.104	1.3516
$O_N_2O_4$	0	-1.104	-1.3516
$N_N_2O_4$	0	0	-0.891
$O_N_2O_4$	0	1.104	-1.3516

Table S4. Input to the calculation of partition functions of NO_2 and of N_2O_4 , obtained by Quantum Mechanics.

Property	NO_2	N_2O_4
Atomization energy [kJ/mol]	$D_0 = 927.7$	$D_0 = 1908.6$
	$\Theta_{\text{rot},1} = 11.19159$	$\Theta_{\rm rot,1}=0.31106$
Rotational temperatures [K]	$\Theta_{\rm rot,2} = 0.61889$	$\Theta_{\rm rot,2}=0.17435$
	$\Theta_{\text{rot},3} = 0.58646$ $\Theta_{\text{rot},3} = 0.11173$	
		$\Theta_{\text{vib},1} = 136.95$
		$\Theta_{\text{vib},2} = 330.47$
		$\Theta_{\text{vib,3}} = 431.14$
	$\Theta_{vib,1} = 1077.91$ $\Theta_{vib,2} = 2019.82$ $\Theta_{vib,3} = 2475.42$	$\Theta_{\text{vib,4}} = 624.03$
		$\Theta_{\text{vib},5} = 720.59$
Vibrational temperatures [K]		$\Theta_{\text{vib},6} = 980.52$
refune temperatures [11]		$\Theta_{\text{vib},7} = 1088.21$
		$\Theta_{\text{vib},8} = 1206.75$
		$\Theta_{\text{vib},9} = 1914.44$
		$\Theta_{\text{vib},10} = 2102.84$
		$\Theta_{\text{vib},11} = 2634.17$
		$\Theta_{\text{vib},12} = 2673.10$
Electronic degeneracy [-]	2	1
Symmetry number [-]	2	4

Table S5. Cosine series coefficients used in Brick for N_2O_4 torsion, $U_{torsion} = c_0 + c_1 \left(1 + \cos \varphi\right) + c_2 \left(1 - \cos 2\varphi\right) + c_3 \left(1 + \cos 3\varphi\right), \ optimised \ from \ Gaussian's \ Quantum \ Mechanics \ results.$

C ₀ [K]	C ₁ [K]	C ₂ [K]	C ₃ [K]
-40.046	-9.196	1826.432	10.335

Figure S1. Isobaric specific heat capacity of NO2 in the ideal gas phase.

Figure S2. Isobaric specific heat capacity of N₂O₄ in the ideal gas phase.

S3. Thermodynamic correlations

Table S6. Optimised coefficients of the P^{sat}-T correlation (P in Pascal) n. (27) of the main text.

i	MC code from which P ^{sat} -T data have been obtained	$\alpha_i[-]$	$oldsymbol{eta}_i\left[ext{T} ight]$
NO_2	MC Brick-CFCMC	21.411091	-1602.068176
N_2O_4	MC Brick-CFCMC	22.633860	-3436.816418
NO_2	MC GIBBS	21.460130	-1624.593796
N_2O_4	MC GIBBS	22.862732	-3492.620373