Supplementary Material for: Transport Properties of Mixtures of Acid Gases with Aqueous Monoethanolamine Solutions: A Molecular Dynamics Study

H. Mert Polat^{a,b,c}, Frédérick de Meyer^{a,b}, Céline Houriez^b, Christophe Coquelet^b, Othonas A. Moultos^c, Thijs J. H. Vlugt^{c,*}

^aCCUS and Acid Gas Entity, Liquefied Natural Gas Department, Exploration Production, TotalEnergies S.E., 92078 Paris, France

^bCTP - Centre of Thermodynamics of Processes, Mines ParisTech, PSL University, 35 rue Saint HonorÃl, 77305 Fontainebleau, France

^cEngineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, Delft 2628CB, The Netherlands

Preprint submitted to Fluid Phase Equilibria

^{*}Corresponding author Email address: t.j.h.vlugt@tudelft.nl (Thijs J. H. Vlugt)

S1. Speedy-Angell Power Equation and Vogel-Tamann-Fulcher Equation

The temperature dependence of values of D_{self} can be described by Speedy-Angell power equation [1] and Vogel-Tamann-Fulcher (VTF) equation [2]. We fit the values of D_{self} of CO₂ and H₂S to Speedy-Angell power equation [1] using:

$$D_{\rm self} = D_0 \left(\frac{T}{T_s} - 1\right)^m \tag{S1}$$

where D_0 is the pre-exponential factor, T_s is the singularity temperature and T is the absolute temperature.

We also fit the values of D_{self} of acid gases to VTF equation [2] using:

$$D_{\text{self}} = \exp\left[\frac{-\alpha}{T-\beta} - \gamma\right]$$
 (S2)

where α , β and γ are the fit parameters.

Figure S1: Deviation of the simulated densities of (a,b) pure MEA and (c,d) 30 wt.% MEA/water from experiments [3] as a function of temperature. Subfigures (a) and (c) show the scaling of LJ the ϵ parameters of MEA. Subfigures (b) and (d) show the scaling of the point charges of MEA. The scaling factors are as follows: Red: $\chi = 1.00$; blue: $\chi = 0.95$; green: $\chi = 0.90$; yellow: $\chi = 0.85$; purple: $\chi = 0.80$; brown: $\chi = 0.75$; cyan: $\chi = 0.70$.

Table S1: Force field parameters for monoethanolamine (MEA). For Lennard-Jones (LJ) interactions, the OPLS-AA [4, 5] force field was used while the atomic charges (corresponding to a charge neutral molecule) were computed using quantum chemical calculations. Quantum chemical calculations were performed using Gaussian09 [6] at second order MÄÿller-Plesset perturbation theory (MP2) [7] level using the 6-311+G(2d,2p) basis set. Atomic charges listed in this table are scaled with $\chi = 0.80$.

Atom	$\epsilon/k_{\rm B}$ / [K]	σ / [Å]	$q \ / \ [e^-]$
N_{T}	85.600	3.30	-0.686816
H_1	1.0000	1.00	0.271816
H_2	1.0000	1.00	0.276432
C_{T1}	33.200	3.50	-0.100352
C_{T2}	33.200	3.50	0.048976
H_{T1}	7.5533	2.50	0.108248
H_{T2}	7.5533	2.50	0.133688
H_{T3}	15.107	2.50	0.099312
H_{T4}	15.107	2.50	0.106488
$O_{\rm H}$	85.605	3.12	-0.628376
H_{O}	1.0000	1.00	0.370584

Table S2: Force field parameters for carbon dioxide. The TraPPE [8] force field was used for carbon dioxide.

Atom	$\epsilon/k_{\rm B}$ / [K]	σ / [Å]	$q \ / \ [e^-]$
Ο	79.0	3.05	-0.35
\mathbf{C}	27.0	2.80	0.70

Table S3: Force field parameters for hydrogen sulfide. The force field from KristÃşf and Lizsi [9] was used. X corresponds to the dummy charge site in force field developed by KristÃşf and Lizsi.

Atom	$\epsilon/k_{\rm B}$ / [K]	σ / [Å]	$q \ / \ [e^-]$
\mathbf{S}	250.0	3.73	0.40
Η	1.000	1.00	0.25
Х	1.000	1.00	-0.90

Temperature / [K]	Viscosity / [cP]			
	Pure MEA	30 wt.% MEA/water		
293	$26.26_{2.2}$	$2.69_{0.1}$		
298	$20.05_{1.6}$	$2.35_{0.1}$		
303	$16.14_{1.2}$	$2.13_{0.1}$		
308	$12.95_{1.1}$	$1.97_{0.2}$		
313	$10.70_{1.6}$	$1.68_{0.2}$		
323	$7.22_{0.6}$	$1.39_{0.1}$		
333	$4.72_{0.4}$	$1.20_{0.1}$		
343	$3.20_{0.6}$	$0.99_{0.1}$		
353	$2.42_{0.2}$	0.91 _{0.1}		

Table S4: Computed viscosities of pure MEA and 30 wt.% MEA solutions. The subscripts in the second and third column show uncertainties computed as one standard deviation.

Table S5: Computed self-diffusivities of MEA and water in pure MEA and 30 wt.% MEA solutions. The subscripts in the second, third, and fourth column show uncertainties computed as one standard deviation.

	$D_{\rm self} \ / \ 10^{-11} \times [{\rm m}^2 {\rm s}^{-1}]$			
Temperature / [K]	Pure MEA	30 wt.% N	MEA/water	
	MEA	MEA	Water	
293	$4.32_{0.7}$	$31.22_{2.4}$	$72.42_{4.0}$	
298	$5.62_{1.0}$	$35.22_{5.3}$	$82.53_{4.0}$	
303	$9.87_{2.3}$	$41.07_{2.0}$	$93.64_{5.6}$	
308	$11.00_{1.9}$	$43.47_{3.9}$	$98.46_{3.5}$	
313	$13.67_{2.2}$	$53.45_{4.3}$	$118.99_{5.6}$	
323	$21.21_{1.2}$	$64.20_{3.3}$	$145.54_{6.2}$	
333	$30.83_{1.8}$	$74.68_{2.6}$	$172.67_{7.0}$	
343	$46.41_{2.2}$	$96.20_{7.9}$	$206.14_{12.3}$	
353	$61.64_{2.4}$	$118.50_{3.8}$	$256.67_{5.4}$	

Table S6: Computed self-diffusion coefficients of CO_2 as a function of temperature and MEA concentration in the solution. The subscripts show uncertainties computed as one standard deviation.

Temperature /	$D_{\rm self} / 10^{-10} \times [{\rm m}^2 {\rm s}^{-1}]$				
[K]	$10~{\rm wt.\%}$	$20~{\rm wt.\%}$	30 wt. $%$	$40~{\rm wt.\%}$	50 wt. $%$
	MEA/wa-	MEA/wa-	MEA/wa-	MEA/wa-	MEA/wa-
	ter	ter	ter	ter	ter
293	$21.27_{0.6}$	$18.58_{1.3}$	$10.68_{1.2}$	$5.71_{0.4}$	$2.82_{0.4}$
298	$22.76_{2.1}$	$22.17_{2.0}$	$13.84_{1.3}$	$6.91_{0.7}$	$4.12_{0.2}$
303	$23.67_{1.8}$	$25.46_{1.8}$	$14.18_{2.0}$	$7.70_{1.0}$	$4.25_{0.7}$
308	$26.94_{2.9}$	$26.15_{2.0}$	$16.99_{1.9}$	$9.39_{1.2}$	$5.32_{0.4}$
313	$31.13_{2.0}$	$30.69_{2.3}$	$20.90_{3.5}$	$12.37_{1.3}$	$7.71_{0.5}$
323	$36.29_{2.4}$	$34.44_{2.4}$	$19.66_{2.3}$	$13.54_{0.9}$	$8.47_{0.3}$
333	$39.25_{2.1}$	$38.07_{2.3}$	$25.97_{0.8}$	$14.43_{1.6}$	$10.02_{1.8}$
343	$46.42_{3.0}$	$43.29_{3.5}$	$29.51_{6.2}$	$17.91_{1.5}$	$10.36_{1.7}$
353	$50.95_{2.3}$	$50.83_{2.9}$	$35.30_{4.3}$	$19.06_{2.5}$	$14.11_{2.2}$

Table S7: Computed self-diffusion coefficients of H_2S as a function of temperature and MEA concentration in the solution. The subscripts show uncertainties computed as one standard deviation.

Temperature /	$D_{\rm self} / 10^{-10} \times [{\rm m}^2 {\rm s}^{-1}]$				
[K]	$10~{\rm wt.\%}$	$20~{\rm wt.\%}$	$30~{\rm wt.\%}$	$40~{\rm wt.\%}$	50 wt. $%$
	MEA/wa-	MEA/wa-	MEA/wa-	MEA/wa-	MEA/wa-
	ter	ter	ter	ter	ter
293	$16.32_{1.5}$	$12.86_{1.4}$	$9.29_{0.8}$	$4.29_{0.4}$	$2.40_{0.2}$
298	$16.10_{1.4}$	$12.95_{1.1}$	$10.09_{0.8}$	$4.97_{0.3}$	$3.26_{0.3}$
303	$17.14_{1.5}$	$15.40_{0.7}$	$11.24_{0.6}$	$6.31_{0.4}$	$3.69_{0.3}$
308	$21.21_{1.3}$	$16.37_{2.5}$	$14.05_{1.2}$	$6.45_{0.5}$	$4.15_{0.3}$
313	$25.13_{3.0}$	$18.78_{2.0}$	$15.58_{1.4}$	$8.26_{0.8}$	$4.83_{0.5}$
323	$28.03_{2.4}$	$23.18_{2.1}$	$19.43_{1.4}$	$10.02_{0.5}$	$6.19_{0.3}$
333	$31.38_{2.7}$	$27.20_{2.9}$	$22.57_{2.2}$	$12.25_{1.8}$	$9.22_{0.7}$
343	$37.91_{2.3}$	$33.33_{2.6}$	$27.00_{3.9}$	$15.02_{0.9}$	$10.61_{0.8}$
353	$45.48_{3.5}$	$34.88_{1.4}$	$30.63_{3.2}$	$20.32_{1.2}$	$13.23_{0.5}$

Table S8: Speedy-Angell power equation [1] $(D_{\text{self}} = D_0 \left(\frac{T}{T_s} - 1\right)^m)$ fit parameters $(D_0, T_S \text{ and } m)$ and coefficient of determinations (R^2) for D_{self} of CO₂ in MEA/water solutions for different MEA concentrations. The values of D_{self} of CO₂ were fitted for a temperature range of 293–353 K.

MEA concentration / [wt.%]	$D_0 \ / \ [\mathrm{m}^2 \mathrm{s}^{-1}]$	$T_{\rm S}$ / [K]	m	R^2
10	1.27×10^{-8}	238.84	1.23	0.991
20	1.25×10^{-8}	241.44	1.19	0.990
30	8.63×10^{-9}	220.23	1.80	0.971
40	4.80×10^{-9}	282.68	0.65	0.978
50	4.33×10^{-9}	280.31	0.87	0.961

Table S9: Speedy-Angell power equation [1] $(D_{\text{self}} = D_0 \left(\frac{T}{T_s} - 1\right)^m)$ fit parameters $(D_0, T_S \text{ and } m)$ and coefficient of determinations (R^2) for D_{self} of H₂S in MEA/water solutions for different MEA concentrations. The values of D_{self} of H₂S were fitted for a temperature range of 293–353 K.

MEA concentration / [wt.%]	$D_0 / [\mathrm{m}^2 \mathrm{s}^{-1}]$	$T_{\rm S}$ / [K]	m	R^2
10	4.31×10^{-10}	120.58	3.57	0.985
20	1.11×10^{-8}	245.76	1.36	0.988
30	1.08×10^{-8}	258.05	1.26	0.997
40	3.63×10^{-35}	0.2031	7.94	0.992
50	6.78×10^{-9}	234.98	2.37	0.993

Table S10: Vogel-Tamann-Fulcher (VTF) equation [2] $(D_{\text{self}} = \exp\left[\frac{-\alpha}{T-\beta} - \gamma\right])$ fit parameters (α, β, γ) and coefficient of determinations (R^2) for D_{self} of CO₂ in MEA/water solutions for different MEA concentrations. The values of D_{self} of CO₂ were fitted for a temperature range of 293–353 K.

MEA concentration / [wt.%]	α	β	γ	\mathbb{R}^2
10	385.62	161.30	17.08	0.992
20	432.29	151.94	16.97	0.990
30	861.74	101.79	16.04	0.971
40	78.726	254.40	19.28	0.979
50	133.60	243.50	19.22	0.960

Table S11: Vogel-Tamann-Fulcher (VTF) equation [2] $(D_{\text{self}} = \exp\left[\frac{-\alpha}{T-\beta} - \gamma\right])$ fit parameters (α, β, γ) and coefficient of determinations (R^2) for D_{self} of H₂S in MEA/water solutions for different MEA concentrations. The values of D_{self} of H₂S were fitted a the temperature range of 293–353 K.

MEA concentration / [wt.%]	α	β	γ	\mathbb{R}^2
10	3069.55	-93.855	12.35	0.985
20	367.787	179.11	17.33	0.989
30	300.548	199.11	17.65	0.997
40	208598	-2604.8	-50.49	0.992
50	804.827	150.63	16.46	0.993

Figure S2: Computed values of D_{self} of (a,c) CO₂ and (b,d) H₂S as a function of temperature and MEA concentration in the solution. The dashed lines represent the fits to (a,b) Speedy-Angell power equation [1] and (c,d) Vogel-Tamann-Fulcher equation [2].

Figure S3: Computed viscosities of MEA/water solutions as a function of temperature and MEA concentration in the solution.

Figure S4: Computed values of D_{self} of (a) water and (b) MEA molecules as a function of temperature and MEA concentration in the solution.

References

- R. J. Speedy, C. A. Angell, Isothermal compressibility of supercooled water and evidence for a thermodynamic singularity at -45°C, The Journal of Chemical Physics 65 (1976) 851–858. doi:10.1063/1.433153.
- [2] W. Lu, H. Guo, I. M. Chou, R. C. Burruss, L. Li, Determination of diffusion coefficients of carbon dioxide in water between 268 and 473K in a high-pressure capillary optical cell with in situ Raman spectroscopic measurements, Geochimica et Cosmochimica Acta 115 (2013) 183–204. doi:10.1016/j.gca.2013.04.010.
- [3] T. G. Amundsen, L. E. Øi, D. A. Eimer, Density and viscosity of monoethanolamine + water + carbon dioxide from (25 to 80)
 °C, Journal of Chemical and Engineering Data 54 (2009) 3096–3100. doi:10.1021/je900188m.
- [4] W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids, Journal of the American Chemical Society 118 (1996) 11225–11236. doi:10.1021/ja9621760.
- [5] R. C. Rizzo, W. L. Jorgensen, OPLS all-atom model for amines: Resolution of the amine hydration problem, Journal of the American Chemical Society 121 (20) (1999) 4827–4836. doi:10.1021/ja984106u.
- [6] M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B.

Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09 Revision E.01, gaussian Inc. Wallingford CT 2009 (2016).

- [7] C. Møller, M. S. Plesset, Note on an approximation treatment for many-electron systems, Physical Review 46 (1934) 618–622. doi:10.1103/PhysRev.46.618.
- [8] J. J. Potoff, J. I. Siepmann, Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen, AIChE Journal 47 (2001) 1676–1682. doi:10.1002/aic.690470719.
- T. Kristóf, J. Liszi, Effective Intermolecular Potential for Fluid Hydrogen Sulfide, The Journal of Physical Chemistry B 101 (1997) 5480–5483. doi:10.1021/jp9707495.