## Supporting Information: Engineering Model for Predicting the Intra-Diffusion Coefficients of Hydrogen and Oxygen in Vapor, Liquid and Supercritical Water based on Molecular Dynamics Simulations

Ioannis N. Tsimpanogiannis\*,<sup>†</sup> Samadarshi Maity,<sup>‡</sup> Alper T. Celebi,<sup>‡</sup> and Othonas A. Moultos<sup>\*,‡</sup>

†Chemical Process & Energy Resources Institute (CPERI), Centre for Research & Technology Hellas (CERTH), 57001, Thermi-Thessaloniki, Greece
‡Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands

E-mail: o.moultos@tudelft.nl,i.n.tsimpanogiannis@certh.gr



Figure S1: The effect of the number of solutes in the computation of intra-diffusivity of  $H_2$  and  $O_2$  in  $H_2O$  at 298.15 K and 0.1 MPa. The number of  $H_2O$  molecules used is 1,000. The Buch,<sup>1</sup> Bohn<sup>2</sup> and TIP4P/2005<sup>3</sup> force fields are used for  $H_2$ ,  $O_2$  and  $H_2O$ , respectively.



Figure S2: Finite-size dependence of the intra-diffusion coefficients of H<sub>2</sub> in (a) liquid in liquid H<sub>2</sub>O (298.15 K and 0.1 MPa), (b) vapor H<sub>2</sub>O (873.15 K and 5 MPa) and (c) supercritical H<sub>2</sub>O (873.15 K and 30 MPa). The Bohn<sup>2</sup> and TIP4P/2005<sup>3</sup> force fields are used for H<sub>2</sub> and H<sub>2</sub>O, respectively. *L* is the simulation box size. For the liquid phase (a), simulations using 1,000, 2,000 and 4,000 H<sub>2</sub>O molecules were used, while for the vapor (b) and supercritical (c) phases, 400, 700 and 1,000 H<sub>2</sub>O molecules were used. The green symbols represent the diffusivities computed in MD simulations. The orange symbols represent the corrected for system-size effects diffusivities using the Yeh-Hummer correction.<sup>4–7</sup> The green line is a linear fit to the MD data and the orange line is the intra-diffusivity extrapolated at infinite system size based on the linear fit to the MD data. The error bars shown in (b) and (c) are in the order of 10% which is larger than the scale of the figure (chosen to clearly show the system-size dependency of  $D_i$ ).



Figure S3: Arrhenius-type plots of the computed intra-diffusion coefficients of (a)  $O_2$  in  $H_2O$  and (b) pure  $H_2O$ . The Bohn<sup>2</sup> and TIP4P/2005<sup>3</sup> force fields are used for  $O_2$  and  $H_2O$ , respectively. The intra-diffusion coefficients are corrected for system-size effects using the Yeh-Hummer correction.<sup>4-7</sup> The error bars have been omitted for clarity. All raw MD data shown here along with the respective uncertainties are listed in Tables 8 ( $O_2$  in  $H_2O$ ) and 9 (pure  $H_2O$ ) of the main manuscript.





Figure S4: The (a) density and (b) shear viscosity of pure  $H_2O$  computed with the TIP4P/2005<sup>3</sup> force field. The lines denote data from NIST.<sup>8</sup> The error bars are smaller than the symbol size. The symbols denoting the different pressures are the same in (a) and (b). All MD raw data shown here along with the respective uncertainties are listed in Tables S6 (density) and S7 (shear viscosity).

| H-Ô-H (°)                           | 104.52  |
|-------------------------------------|---------|
| $l_{\text{O-H}}$ / [Å]              | 0.9572  |
| $\sigma_{\rm OO}$ / [Å]             | 3.1589  |
| $\sigma_{ m HH}$ / [Å]              | 0       |
| $\epsilon_{\rm OO}/k_{\rm B}$ / [K] | 93.2    |
| $\epsilon_{ m HH}/k_{ m B}$ / [K]   | 0       |
| $q_{\rm O}$ / [e]                   | -1.1128 |
| $q_{ m H}$ / [e]                    | 0.5564  |

Table S1: Parameters for the  $TIP4P/2005^3$  water force field.

Table S2: Force field parameters for the hydrogen models used in this study.  $\epsilon$  and  $\sigma$  are the Lennard-Jones parameters, q is the atomic partial charge, dummy site L is the geometric center of mass for the Marx and Silvera-Goldman models. The H-H bond length of the two-site and three-site force fields is 0.74 Å.

|                                         | $\operatorname{Buch}^1$ | Hirschfelder <sup>9</sup> | Vrabec <sup>10</sup> | Cracknell <sup>11</sup> | $Marx^{12}$ | Silvera-Goldman <sup>13</sup> |
|-----------------------------------------|-------------------------|---------------------------|----------------------|-------------------------|-------------|-------------------------------|
| $\epsilon_{\rm HH}/k_{\rm B}/[{\rm K}]$ | 34.2                    | 38                        | 25.84                | 12.5                    |             |                               |
| $\sigma_{ m HH}$ / [Å]                  | 2.96                    | 2.915                     | 3.0366               | 2.59                    |             |                               |
| $q_{ m H}$ / [e]                        |                         |                           |                      |                         | 0.468       | 0.4932                        |
| $q_{ m L}$ / [e]                        |                         |                           |                      |                         | -0.936      | -0.9864                       |
| $\epsilon_{\rm LL}/k_{\rm B}/[{ m K}]$  |                         |                           |                      |                         | 36.7        | 34.27                         |
| $\sigma_{ m LL} \;/\; [{ m \AA}]$       |                         |                           |                      |                         | 2.958       | 3.038                         |

Table S3: Force field parameters for the oxygen models used in this study.  $\epsilon$  and  $\sigma$  are the Lennard-Jones parameters, q is the atomic partial charge, dummy site L is the geometric center of mass for the Hansen and Vrabec and Watanabe models. The O-O bond length of the two-site and three-site force fields is denoted as  $d_{OO}$ .

|                                         | $Bohn^2$ | Miyano <sup>14</sup> | $\operatorname{Coon}^{15}$ | Hansen <sup>16</sup> | Vrabec <sup>17</sup> | Watanabe <sup>18</sup> |
|-----------------------------------------|----------|----------------------|----------------------------|----------------------|----------------------|------------------------|
| $\epsilon_{\rm OO}/k_{\rm B}/[{\rm K}]$ | 37.99    | 48.31                | 44.59                      |                      |                      |                        |
| $\sigma_{ m OO}$ / [Å]                  | 3.2104   | 3.03                 | 3.09                       |                      |                      |                        |
| <i>q</i> <sub>O</sub> / [e]             |          |                      |                            | 0.246                | 0.714                | 0.224                  |
| $q_{ m L}$ / [e]                        |          |                      |                            | -0.123               | -0.357               | -0.112                 |
| $\epsilon_{\rm LL}/k_{\rm B}/[{ m K}]$  |          |                      |                            | 49.06                | 43.18                | 54.35                  |
| $\sigma_{ m LL} \;/\; [ m \AA]$         |          |                      |                            | 3.013                | 3.106                | 3.05                   |
| $d_{ m OO}$ / [Å]                       |          |                      |                            | 0.605                | 0.485                | 0.605                  |

Table S4: The density of pure H<sub>2</sub> computed using different force fields for various temperatures and pressures. T is in units of K, P in MPa, and  $\rho$  in Kg m<sup>-3</sup>. All densities have uncertainties in the range of 0.1 - 1%.

|                                                          |        | Buch              |       |       |  |  |  |  |  |  |
|----------------------------------------------------------|--------|-------------------|-------|-------|--|--|--|--|--|--|
| P / T                                                    | 250    | 500               | 750   | 1000  |  |  |  |  |  |  |
| 0.1                                                      | 0.098  | 0.049             | 0.033 | 0.025 |  |  |  |  |  |  |
| 7.5                                                      | 6.966  | 3.577             | 2.411 | 1.811 |  |  |  |  |  |  |
| 15                                                       | 13.411 | 6.946             | 4.747 | 3.585 |  |  |  |  |  |  |
| 30                                                       | 24.460 | 13.190            | 9.202 | 6.839 |  |  |  |  |  |  |
|                                                          | C      | racknell          |       |       |  |  |  |  |  |  |
| P / T                                                    | 250    | 500               | 750   | 1000  |  |  |  |  |  |  |
| 0.1                                                      | 0.093  | 0.050             | 0.034 | 0.026 |  |  |  |  |  |  |
| 7.5                                                      | 6.833  | 3.635             | 2.437 | 1.771 |  |  |  |  |  |  |
| 15                                                       | 13.630 | 7.022             | 4.661 | 3.574 |  |  |  |  |  |  |
| 30                                                       | 25.689 | 13.277            | 9.295 | 7.040 |  |  |  |  |  |  |
|                                                          |        | Vrabec            |       |       |  |  |  |  |  |  |
| P / T                                                    | 250    | 500               | 750   | 1000  |  |  |  |  |  |  |
| 0.1                                                      | 0.097  | 0.049             | 0.033 | 0.025 |  |  |  |  |  |  |
| 7.5                                                      | 6.828  | 3.631             | 2.412 | 1.817 |  |  |  |  |  |  |
| 15                                                       | 13.235 | 6.890             | 4.724 | 3.554 |  |  |  |  |  |  |
| 30                                                       | 23.480 | 13.036            | 8.941 | 6.859 |  |  |  |  |  |  |
|                                                          | Hi     | rschfelde         | r     | 1     |  |  |  |  |  |  |
| P / T                                                    | 250    | 500               | 750   | 1000  |  |  |  |  |  |  |
| 0.1                                                      | 0.099  | 0.049             | 0.033 | 0.024 |  |  |  |  |  |  |
| 7.5                                                      | 7.004  | 3.564             | 2.418 | 1.805 |  |  |  |  |  |  |
| 15                                                       | 13.513 | 7.023             | 4.758 | 3.617 |  |  |  |  |  |  |
| 30                                                       | 25.140 | 13.222            | 9.116 | 6.960 |  |  |  |  |  |  |
|                                                          | I      | Marx              | I     | I     |  |  |  |  |  |  |
| $\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$ |        |                   |       |       |  |  |  |  |  |  |
| 0.1                                                      | 0.096  | 0.048             | 0.031 | 0.024 |  |  |  |  |  |  |
| 7.5                                                      | 7.075  | 3.576             | 2.397 | 1.769 |  |  |  |  |  |  |
| 15                                                       | 13.259 | 6.926             | 4.699 | 3.567 |  |  |  |  |  |  |
| 30                                                       | 24.293 | 13.257            | 9.045 | 6.953 |  |  |  |  |  |  |
|                                                          | Silve  | ra-Goldm          | nan   |       |  |  |  |  |  |  |
| P / T                                                    | 250    | 500               | 750   | 1000  |  |  |  |  |  |  |
| 0.1                                                      | 0.095  | 0.048             | 0.032 | 0.023 |  |  |  |  |  |  |
| 7.5                                                      | 7.070  | 3.605             | 2.406 | 1.838 |  |  |  |  |  |  |
| 15                                                       | 13.296 | 6.851             | 4.774 | 3.604 |  |  |  |  |  |  |
| 30                                                       | 23.697 | 13.296            | 8.912 | 6.881 |  |  |  |  |  |  |
|                                                          | 1      | NIST <sup>8</sup> | 1     | 1     |  |  |  |  |  |  |
| P / T                                                    | 250    | 500               | 750   | 1000  |  |  |  |  |  |  |
| 0.1                                                      | 0.096  | 0.048             | 0.032 | 0.024 |  |  |  |  |  |  |
| 7.5                                                      | 6.928  | 3.533             | 2.378 | 1.792 |  |  |  |  |  |  |
| 15                                                       | 13.186 | 6.869             | 4.665 | 3.534 |  |  |  |  |  |  |
| 30                                                       | 23.902 | 13.015            | 8.992 | 6.878 |  |  |  |  |  |  |

Table S5: The density of pure O<sub>2</sub> computed using different force fields for various temperatures and pressures. T is in units of K, P in MPa, and  $\rho$  in Kg m<sup>-3</sup>. All densities have uncertainties in the range of 0.1 - 1%. The values from NIST<sup>8</sup> are shown for comparison.

|      | D   |         |         |         | ρ       |         |          |         |
|------|-----|---------|---------|---------|---------|---------|----------|---------|
|      | Г   | Bohn    | Miyano  | Coon    | Hansen  | Vrabec  | Watanabe | NIST    |
| 200  | 0.1 | 1.920   | 1.913   | 1.918   | 1.930   | 1.947   | 1.954    | 1.956   |
| 350  | 0.1 | 1.091   | 1.090   | 1.090   | 1.110   | 1.130   | 1.120    | 1.114   |
| 600  | 0.1 | 0.675   | 0.676   | 0.675   | 0.657   | 0.667   | 0.647    | 0.650   |
| 1000 | 0.1 | 0.389   | 0.417   | 0.405   | 0.392   | 0.384   | 0.387    | 0.390   |
| 200  | 50  | 823.016 | 803.890 | 816.979 | 814.846 | 827.600 | 844.637  | 839.970 |
| 350  | 50  | 467.700 | 468.400 | 463.100 | 468.800 | 468.500 | 477.100  | 476.940 |
| 600  | 50  | 274.212 | 276.134 | 277.481 | 267.935 | 277.329 | 276.200  | 276.140 |
| 1000 | 50  | 172.961 | 167.161 | 169.034 | 169.535 | 170.193 | 171.291  | 171.190 |

Table S6: The density of pure H<sub>2</sub>O computed for a wide range of temperatures and pressures using the TIP4P/2005<sup>3</sup> force field. T is in units of K, P in MPa, and  $\rho$  in Kg m<sup>-3</sup>. All densities have uncertainties in the range of 0.1 - 1%.

|                  |        |     |        | 7      | 6      |        |        |        |        |
|------------------|--------|-----|--------|--------|--------|--------|--------|--------|--------|
| 2.5 $5.0$        | 5.0    |     | 7.5    | 10     | 12.5   | 20     | 30     | 100    | 200    |
| 1002.4           | 1002.4 |     | 1003.7 | 1004.9 |        | 1009.8 | 1014.6 |        |        |
| 14 999.28        | 999.28 |     |        | 1001.5 | 1002.6 | 1006   | 1010.3 | 1038.4 | 1072.7 |
| 990.19           | 990.19 |     |        | 992.36 |        | 996.64 | 1000.8 |        |        |
| 34 975.92 977.04 | 977.04 |     |        | 979.25 |        | 983.59 | 987.83 |        |        |
| 1 967.57         | 967.57 |     |        | 969.84 |        | 974.3  | 978.64 | 1006.4 | 1040.1 |
|                  |        |     |        | 922.39 | 923.77 |        |        | 965.39 | 1002.9 |
| 3 897.97         | 897.97 |     | 896.57 | 898.15 |        | 904.29 | 910.17 | 945.63 | 985.57 |
|                  |        |     |        |        |        |        |        | 924.39 | 967.38 |
| 3 836.05         | 836.05 |     |        | 840.55 |        | 849.04 | 856.94 |        |        |
|                  |        |     | 803.05 |        |        | 816.35 | 825.92 | 877.46 | 928.49 |
| 4 22.405         | 22.405 | ••  | 38.121 | 715.58 | 720.92 | 735.17 | 751.24 | 824.2  | 886.53 |
|                  |        |     |        | 55.887 |        |        |        |        |        |
|                  |        |     |        | 45.376 | 63.317 |        | 645.25 | 763.72 | 841.75 |
|                  |        |     |        |        |        | 519.2  | 603    |        |        |
|                  |        |     |        |        |        | 165.14 |        |        |        |
|                  |        |     |        |        |        |        | 515.77 | 717.87 |        |
| 7 17.537         | 17.537 |     | 27.459 | 38.431 | 50.783 | 102.96 | 373.47 | 694.86 | 794.43 |
|                  |        |     | 24.749 |        |        | 80.05  | 152.09 | 616.9  |        |
| 4 14.782         | 14.782 | • • | 22.663 | 30.92  | 39.599 | 68.702 | 117.24 | 532.04 |        |
|                  |        |     |        |        |        |        | 99.921 | 449.07 |        |
| 2 12.878         | 12.878 |     | 19.561 | 26.42  | 33.463 | 55.802 | 88.742 | 378.86 |        |
| 5 11.449         | 11.449 |     | 17.304 | 23.251 | 29.29  | 47.985 | 74.304 | 285.92 | 502.56 |

| S       | e                         |          |  |
|---------|---------------------------|----------|--|
| 00      | $_{\mathrm{th}}$          |          |  |
| 2       | of                        |          |  |
| 4F      | al                        |          |  |
| ≙       | θľV                       |          |  |
| Ξ       | nte                       |          |  |
| he      | е і                       |          |  |
| ы<br>т  | nc                        |          |  |
| in      | ide                       |          |  |
| n       | nfi                       |          |  |
| es      | 00                        |          |  |
| Ins     | 8                         |          |  |
| .es     | <u> </u>                  |          |  |
| pī      | x                         |          |  |
| nd      | Ŋ                         |          |  |
| g.      | ıtil                      |          |  |
| res     | laľ                       |          |  |
| tu.     | ಕ                         |          |  |
| era     | of                        |          |  |
| 1D(     | ty                        |          |  |
| en      | ain                       |          |  |
| Ľt<br>L | $\operatorname{srt}_{6}$  |          |  |
| 0       | JCE                       |          |  |
| ng      | Ξ                         |          |  |
| ra      | he                        |          |  |
| de      | s<br>t                    |          |  |
| WI.     | <br>                      |          |  |
| а       | 0                         |          |  |
| or      | s.                        |          |  |
| Ч<br>Ч  | $\mathbf{P}_{\mathbf{S}}$ |          |  |
| Ite     | В                         |          |  |
| nd      | in                        |          |  |
| mc      | Ľ                         |          |  |
| Ŭ<br>-  | pu                        |          |  |
| $^{5}O$ | a<br>,                    |          |  |
| Η       | $\mathbf{Pa}$             |          |  |
| lre     | Ζ                         |          |  |
| рц      | п.                        |          |  |
| of      | Ъ                         |          |  |
| ťy      | Ń                         |          |  |
| osi     | f I                       |          |  |
| SC      | S                         |          |  |
| 5       | nit                       |          |  |
| ear     | Ξ                         | <b>1</b> |  |
| she     | п.                        | ior      |  |
| le      | IS.                       | iat      |  |
| Ħ       | Н                         | ev       |  |
|         | ld.                       | d<br>d   |  |
| S       | fie                       | ar(      |  |
| ble     | ce                        | pu       |  |
| Ta.     | fore                      | sta      |  |
|         |                           | <b>.</b> |  |

| $\sigma_{\eta}$ | 0         |        | 0.049  |        |        | 0.018  | 0.012  | 0.018  | 0.016  |        | 0.014  | 0.015  |        | 0.012  |        |        |        | 0.01   |        |        |        |         | 0.0046 |
|-----------------|-----------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|--------|
| μ               | 20        |        | 0.877  |        |        | 0.370  | 0.220  | 0.198  | 0.165  |        | 0.143  | 0.127  |        | 0.112  |        |        |        | 0.10   |        |        |        |         | 0.0696 |
| $\sigma_{\eta}$ | 00        |        | 0.072  |        |        | 0.031  | 0.016  | 0.025  | 0.013  |        | 0.010  | 0.018  |        | 0.005  |        |        | 0.005  | 0.003  | 0.004  | 0.004  | 0.004  | 0.002   | 0.002  |
| μ               | 1(        |        | 0.792  |        |        | 0.340  | 0.200  | 0.178  | 0.154  |        | 0.127  | 0.109  |        | 0.094  |        |        | 0.087  | 0.083  | 0.072  | 0.065  | 0.057  | 0.053   | 0.048  |
| $\sigma_{\eta}$ | 0         | 0.17   | 0.098  | 0.088  | 0.045  | 0.037  |        | 0.016  |        | 0.024  | 0.017  | 0.015  |        | 0.005  | 0.004  |        | 0.002  | 0.0066 | 0.002  | 0.0043 | 0.002  | 0.0051  | 0.006  |
| μ               | ñ         | 1.45   | 0.761  | 0.462  | 0.348  | 0.32   |        | 0.157  |        | 0.133  | 0.109  | 0.092  |        | 0.074  | 0.067  |        | 0.048  | 0.0237 | 0.026  | 0.0288 | 0.029  | 0.0331  | 0.036  |
| $\sigma_{\eta}$ |           | 0.18   | 0.10   | 0.09   | 0.055  | 0.034  |        | 0.015  |        | 0.015  | 0.016  | 0.009  |        |        | 0.003  | 0.003  |        | 0.0011 | 0.002  | 0.0027 |        | 0.0025  | 0.0069 |
| μ               | 5(        | 1.47   | 0.76   | 0.47   | 0.351  | 0.322  |        | 0.158  |        | 0.132  | 0.1111 | 060.0  |        |        | 0.057  | 0.031  |        | 0.0241 | 0.024  | 0.0277 |        | 0.0314  | 0.0345 |
| $\sigma_{\eta}$ | 5.        |        | 0.083  |        |        |        | 0.039  |        |        |        |        | 0.002  |        | 0.001  |        |        |        | 0.002  |        | 0.001  |        | 0.001   | 0.002  |
| μ               | 12        |        | 0.763  |        |        |        | 0.188  |        |        |        |        | 0.084  |        | 0.021  |        |        |        | 0.021  |        | 0.027  |        | 0.031   | 0.035  |
| $\sigma_{\eta}$ | 0         | 0.21   | 0.12   | 0.093  | 0.066  | 0.065  | 0.041  | 0.018  |        | 0.020  |        | 0.014  | 0.002  | 0.001  |        |        |        | 0.004  |        | 0.0015 |        | 0.00095 | 0.004  |
| μ               | 1         | 1.48   | 0.75   | 0.478  | 0.365  | 0.332  | 0.188  | 0.153  |        | 0.125  |        | 0.085  | 0.018  | 0.019  |        |        |        | 0.0226 |        | 0.0269 |        | 0.03020 | 0.034  |
| $\sigma_{\eta}$ | 5         | 0.069  |        |        |        |        |        | 0.016  |        |        | 0.036  | 0.001  |        |        |        |        |        | 0.001  | 0.0023 | 0.001  |        | 0.001   | 0.002  |
| μ               | 2         | 1.416  |        |        |        |        |        | 0.167  |        |        | 0.139  | 0.017  |        |        |        |        |        | 0.022  | 0.0222 | 0.027  |        | 0.029   | 0.033  |
| $\sigma_{\eta}$ | 0         | 0.21   | 0.15   | 0.13   | 0.037  | 0.041  |        | 0.023  |        | 0.01   |        | 0.0004 |        |        |        |        |        | 0.001  |        | 0.0011 |        | 0.0015  | 0.0016 |
| μ               | ŭ         | 1.51   | 0.76   | 0.48   | 0.369  | 0.334  |        | 0.152  |        | 0.13   |        | 0.0180 |        |        |        |        |        | 0.022  |        | 0.0261 |        | 0.0263  | 0.0348 |
| $\sigma_{\eta}$ | .5        |        |        |        | 0.057  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |         |        |
| μ               | 21        |        |        |        | 0.369  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |         |        |
| $\sigma_{\eta}$ | 1         | 0.21   | 0.16   | 0.13   | 0.045  | 0.036  |        | _      |        |        |        |        |        |        | _      |        |        | _      |        |        |        |         | _      |
| μ               | 0.        | 1.50   | 0.78   | 0.50   | 0.367  | 0.326  |        |        |        |        |        |        |        |        |        |        |        |        |        |        |        |         |        |
|                 | $T \ / P$ | 275.15 | 298.15 | 323.15 | 348.15 | 363.15 | 423.15 | 448.15 | 473.15 | 498.15 | 523.15 | 573.15 | 586.15 | 623.15 | 637.15 | 641.15 | 657.15 | 673.15 | 723.15 | 773.15 | 823.15 | 873.15  | 973.15 |
|                 |           | 1      |        |        |        |        | 1      |        |        |        |        | 1      |        |        |        |        | l I    |        |        |        |        | 1       |        |

## Literature Cited

- Buch, V. Path integral simulations of mixed para-D<sub>2</sub> and ortho-D<sub>2</sub> clusters: The orientational effects. J. Chem. Phys. **1994**, 100, 7610–7629.
- (2) Bohn, M.; Lustig, R.; Fischer, J. Description of polyatomic real substances by twocenter Lennard-Jones model fluids. *Fluid Phase Equilib.* **1986**, *25*, 251–262.
- (3) Abascal, J. L. F.; Vega, C. A general purpose model for the condensed phases of water: TIP4P/2005. J. Chem. Phys. 2005, 123, 234505.
- (4) Yeh, I.-C.; Hummer, G. System-size Dependence of Diffusion Coefficients and Viscosities from Molecular Dynamics Simulations with Periodic Boundary Conditions. J. Phys. Chem. B 2004, 108, 15873–15879.
- Jamali, S. H.; Wolff, L.; Becker, T. M.; Bardow, A.; Vlugt, T. J. H.; Moultos, O. A. Finite-size Effects of Binary Mutual Diffusion Coefficients from Molecular Dynamics. J. Chem. Theory Comput. 2018, 14, 2667–2677.
- (6) Jamali, S. H.; Bardow, A.; Vlugt, T. J. H.; Moultos, O. A. Generalized Form for Finite-Size Corrections in Mutual Diffusion Coefficients of Multicomponent Mixtures Obtained from Equilibrium Molecular Dynamics Simulation. J. Chem. Theory Comput. 2020, 16, 3799–3806.
- (7) Celebi, A. T.; Jamali, S. H.; Bardow, A.; Vlugt, T. J. H.; Moultos, O. A. Finite-size Effects of Diffusion Coefficients Computed from Molecular Dynamics: A Review of What we have Learned so far. Mol. Sim. in press, https://doi.org/10.1080/08927022.2020.1810685 2021,
- (8) Lemmon, E. W.; Bell, I. H.; Huber, M. L.; McLinden, M. O. NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology. 2018.

- (9) Hirschfelder, J.; Curtiss, C.; Bird, R. Molecular Theory of Gases and Liquids; Wiley, 1954.
- (10) Köster, A.; Thol, M.; Vrabec, J. Molecular Models for the Hydrogen Age: Hydrogen, Nitrogen, Oxygen, Argon, and Water. J. Chem. Eng. Data 2018, 63, 305–320.
- (11) Cracknell, R. F. Molecular simulation of hydrogen adsorption in graphitic nanofibres.
   *Phys. Chem. Chem. Phys.* 2001, *3*, 2091–2097.
- Marx, D.; Nielaba, P. Path-integral Monte Carlo techniques for rotational motion in two dimensions: Quenched, annealed, and no-spin quantum-statistical averages. *Phys. Rev. A* 1992, 45, 8968–8971.
- (13) Alavi, S.; Ripmeester, J. A.; Klug, D. D. Molecular-dynamics study of structure II hydrogen clathrates. J. Chem. Phys. 2005, 123, 024507.
- (14) Miyano, Y. Molecular simulation with an EOS algorithm for vapor-liquid equilibria of oxygen and ethane. *Fluid Phase Equilib.* **1999**, *158-160*, 29–35.
- (15) Coon, J. E.; Gupta, S.; McLaughlin, E. Isothermalisobaric molecular dynamics simulation of diatomic liquids and their mixtures. *Chem. Phys.* **1987**, *113*, 43–52.
- (16) Hansen, N.; Agbor, F. A.; Keil, F. J. New force fields for nitrous oxide and oxygen and their application to phase equilibria simulations. *Fluid Phase Equilib.* 2007, 259, 180–188.
- (17) Vrabec, J.; Stoll, J.; Hasse, H. A set of molecular models for symmetric quadrupolar fluids. J. Phys. Chem. B 2001, 105, 12126–12133.
- (18) Watanabe, K.; Austin, N.; Stapleton, M. R. Nvestigation of the air separation properties of zeolites types a, x and y by monte carlo simulations. *Mol. Sim.* **1995**, *15*, 197–221.