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I. FORCE FIELD PARAMETERS FOR CHOLINE CHLORIDE AND UREA

Figure S1: Molecular structure of choline chloirde and urea, and atom labels.
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Table SI: Partial charges, masses, and Lennard-Jones (12-6) parameters for all atomic species for

choline chloride and urea. Choline choride and urea molecules are modelled using GAFF.1.

Charges are taken from Perkins et al.2 See Figure S1 for labeling of the atoms. The LJ potential

is calculated as: VLJ(r)=4ε[(σ

r )12-(σ

r )6].

No Name q/[e] m/[u] ε/kB /[K] σ /[Å]

1 C -0.10736 12.0107 55.052 3.3996

2 C1 0.12008 12.0107 55.052 3.3996

3 C2 -0.02576 12.0107 55.052 3.3996

4 CU 1.0401 12.0107 43.277 3.3996

5 Cl -0.8 35.453 50.322 4.401

6 H 0.09544 1.00794 7.901 1.9599

7 H2 0.0408 1.00794 7.901 2.4713

8 H3 0.3636 1.00794 0.503 0.1

9 H4 0.08928 1.00794 7.901 1.9599

10 HU 0.4167 1.00794 7.901 1.069

11 N 0.04016 14.0067 85.547 3.2499

12 NU -1.0246 14.0067 85.547 3.25

13 O -0.49512 15.9994 105.877 3.0664

14 OU -0.6577 15.9994 105.676 2.96
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Table SII: Bond-stretching parameters for choline choride and urea molecules based on GAFF.1

See Figure S1 for labeling of the atoms. The bond-stretching energy is calculated as:

EBond(r)=Kr(r-r0)2.

No Name Kr/kB /[K Å-2] r0/[Å]

1 C-H 170440.5 1.09

2 C2-N 147745.3 1.5

3 C1-O 158061.3 1.43

4 C1-H2 169031.5 1.09

5 HU-NU 206420.7 1.01

6 C-N 147745.3 1.5

7 C1-C2 152525.9 1.54

8 C2-H4 170440.5 1.09

9 CU-NU 240639.7 1.35

10 H3-O 185990.0 0.97

11 CU-OU 326086.4 1.21
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Table SIII: Angle-bending parameters for choline choride and urea molecules based on GAFF.1

See Figure S1 for labeling of the atoms. The angle-bending energy is calculated as:

EAngle(θ )=Kθ (θ -θ 0)2.

No Name Kθ /kB /[K rad-2] θ 0

1 C-N-C2 31622.3 110.6

2 H2-C1-H2 19716.1 109.6

3 C2-C1-O 34078.0 109.4

4 H-C-N 24667.8 107.9

5 C2-C1-H2 23329.3 110.1

6 CU-NU-HU 24763.4 118.5

7 H2-C1-O 25649.1 109.9

8 C1-O-H3 23696.6 108.2

9 H4-C2-N 24667.8 107.9

10 C1-C2-N 32432.5 114.3

11 HU-NU-HU 19992.9 117.9

12 NU-CU-NU 37640.8 113.4

13 H-C-H 19645.7 110.7

14 NU-CU-OU 38159.1 122

15 C-N-C 31622.3 110.6

16 H4-C2-H4 19645.7 110.7

17 C1-C2-H4 23158.2 111.7
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Table SIV: Dihedral torsion parameters for choline choride and urea molecules based on GAFF1.

See Figure S1 for labeling of the atoms. The torsion energy for the Charmm style is calculated

as: EDihedral(φ )=V n
2 [1+cos(nφ -γ)]. The torsion energy for the OPLS style is calculated as:

EDihedral(φ )=K1
2 [1+cos(φ )]+K2

2 [1-cos(2φ )]+K3
2 [1+cos(3φ )].

No Name Vn/2/kB /[K] n γ Style

1 H4-C2-N-C 78.50 3 0 Charmm

2 C1-C2-N-C 78.50 3 0 Charmm

3 O-C1-C2-H4 78.50 3 0 Charmm

4 H-C-N-C2 78.50 3 0 Charmm

5 H2-C1-C2-H4 78.50 3 0 Charmm

6 NU-CU-NU-HU 1258.05 2 180 Charmm

7 H2-C1-O-H3 84.04 3 0 Charmm

8 H2-C1-C2-N 78.50 3 0 Charmm

9 H-C-N-C 78.50 3 0 Charmm

10 O-C1-C2-N 78.50 3 0 Charmm

No Name K1/kB /[K] K2/kB /[K] K3/kB /[K] Style

11 OU-CU-NU-HU 2012.88 2516.10 0 OPLS

12 C2-C1-O-H3 251.61 0 161.03 OPLS
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Table SV: Improper torsion parameters for choline choride and urea molecules using GAFF1.

See Figure S1 for labeling of the atoms. The torsion energy is calculated as:

EDihedral(φ )=V n
2 [1+cos(nφ -γ)].

No Name Vn/2/kB /[K] n γ

1 CU-HU-NU-HU 553.54 180 2

2 NU-NU-CU-OU 5283.81 180 2
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II. RADIAL DISTRIBUTION FUNCTIONS OF PSEUDO–BINARY MIXTURES

In this section, we describe how to combine RDFs for components that should be treated as indis-

tinguishable. We are specifically looking at the case where we merge the identity of two pair cor-

relation functions, to create a new "virtual" component. First, we show the derivation for a ternary

mixture α , θ and γ , where the identities of θ and γ are combined as β . Second, we will provide

the expressions for the case of combining an arbitrary number of components. Finally, we show

that the obtained RDFs converge to the correct answer in the case of an ideal gas.

The radial distribution function of molecules of the same type equals:3

gii(r) =
nii(r)/Vshell(r)

Ni/Vbox
=

nii(r)
Ni

c(r) (1)

where nii(r)/Vshell is the local density of component i inside a small radial shell at distance r from

a central molecule of type i, Ni/Vbox is the overall number density of component i in the system and

c(r) =Vshell(r)/Vbox. In the case of molecules of two different types, RDFs are computed from

gi j(r) =
ni j(r)

N j
c(r) (2)

where ni j(r) is the number of atoms of type j in a radial shell formed around a central molecule

of type i. Based on these general expressions, we can write the following RDFs for the ternary sys-

tem composed of α , θ and γ:

gαα(r) =
nαα(r)

Nα

c(r) (3)

gθθ (r) =
nθθ (r)

Nθ

c(r) (4)

gγγ(r) =
nγγ(r)

Nγ

c(r) (5)

gαθ (r) =
nαθ (r)

Nθ

c(r) (6)

gαγ(r) =
nαγ(r)

Nγ

c(r) (7)

gθα(r) =
nθα(r)

Nα

c(r) (8)
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gγα(r) =
nγα(r)

Nα

c(r) (9)

gγθ (r) =
nγθ (r)

Nθ

c(r) (10)

gθγ(r) =
nθγ(r)

Nγ

c(r) (11)

Note that RDFs are symmetric, so gi j(r) equals g ji(r). For example, gαθ (r) equals gθα(r) which

means that nαθ (r)
Nθ

equals nθα (r)
Nα

. The expressions above are used to find RDFs of the pseudo binary

mixture (α and β ) resulting from combining the identity of θ and γ into β . For this new system,

we need to find expressions for gββ (r) and gβα(r). To find gββ (r), we start with the general RDF

expression for similar molecules (Eq. (1))

gββ (r) =
nββ (r)

Nβ

c(r) (12)

The local number of molecules nββ (r) is composed of different contributions: nθθ (r), nθγ(r), nγθ (r),

and nγγ(r). The probabilities that the central molecule is of type θ or of type γ are Nθ/Nβ and Nγ/Nβ ,

respectively. Nβ is the total number of indistinguishable molecules, so Nβ = Nθ + Nγ . Including

these contributions in Eq. (12) yields

gββ (r) =

(
Nθ

Nβ
nθθ (r)+

Nγ

Nβ
nγγ(r)+

Nγ

Nβ
nγθ (r)+

Nθ

Nβ
nθγ(r)

)
Nβ

c(r)

=

(
Nθ nθθ (r)+Nγnγγ(r)+Nγnγθ (r)+Nθ nθγ(r)

)
N2

β

c(r)

(13)

Multiplying and diving the nominator by Nθ Nγ

Nθ Nγ
, yields

gββ (r) =

(
N2

θ
Nγ

Nθ Nγ
nθθ (r)+

N2
γ Nθ

Nθ Nγ
nγγ(r)+

N2
γ Nθ

Nθ Nγ
nγθ (r)+

N2
θ

Nγ

Nθ Nγ
nθγ(r)

)
N2

β

c(r) (14)

Using Eqs. (4), (5), (10) and (11) results in

gββ (r) =

(
N2

θ
Nγ

Nγ
gθθ (r)+

N2
γ Nθ

Nθ
gγγ(r)+

N2
γ Nθ

Nγ
gγθ (r)+

N2
θ

Nγ

Nθ
gθγ(r)

)
N2

β

(15)
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The functions gθγ(r) and gγθ (r) are equal and Eq. (15) can be further simplified to

gββ (r) =
N2

θ
gθθ (r)+N2

γ gγγ(r)+2Nθ Nγgθγ(r)

N2
β

(16)

Similarly, to find gβα(r), we apply the general expression for RDFs of two different molecules (Eq. (2))

gβα(r) =
nβα(r)

Nα

c(r) (17)

where nβα(r) accounts for two contributions: nθα(r) and nγα(r). The probability that the central

molecule is of type θ is Nθ/Nβ . Similarly, the probability that the central molecule is of type γ is

Nγ/Nβ . As a result Eq. (17) can be rewritten as

gβα(r) =

(
Nθ

Nβ
nθα(r)+

Nγ

Nβ
nγα(r)

)
Nα

c(r)

=
Nθ

Nβ Nα

nθα(r)c(r)+
Nγ

Nβ Nα

nγα(r)c(r)

(18)

Using Eqs. (8) and (9) results in

gβα(r) =
Nθ gθα(r)+Nγgγα(r)

Nβ

(19)

In the same way, Eqs. (16) and (19) can be generalized for the case of a system of component α

and n indistinguishable components 1, 2, 3,... n denoted as β . The RDFs of the pseudo binary mix-

ture composed of α and β (Nβ = N1 +N2 + ....Nn) can written as:

gββ (r) =

n
∑

i=1

n
∑
j=1

NiN jgi j(r)(
n
∑

i=1
Ni

)2 (20)

gβα(r) =

n
∑

i=1
Nigiα(r)

n
∑

i=1
Ni

(21)

In the case of an ideal gas, RDFs of the combined molecules gββ (r) and gβα(r) should converge

to (Nβ −1)/Nβ and 1, respectively.4 Considering an ideal gas mixture that consists of α and n in-

distinguishable components, we start with Eq. (20) and substitute the RDFs in the expressions with

the ideal gas answer: gii(r) = (Ni−1)/Ni and gi j(r) = 1 (where i 6= j). This results in:
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gββ (r) =

n
∑

i=1

n
∑

j=1( j 6=i)
NiN jgi j(r)+

n
∑

i=1
N2

i gii(r)(
n
∑

i=1
Ni

)2

=

n
∑

i=1

n
∑

j=1( j 6=i)
NiN j +

n
∑

i=1
N2

i
Ni−1

Ni(
n
∑

i=1
Ni

)2

=

n
∑

i=1

n
∑
j=1

NiN j−
n
∑

i=1
N2

i +
n
∑

i=1
Ni(Ni−1)(

n
∑

i=1
Ni

)2

=

n
∑

i=1
Ni

n
∑
j=1

N j−
n
∑

i=1
N2

i +
n
∑

i=1
N2

i −
n
∑

i=1
Ni(

n
∑

i=1
Ni

)2

=

(
n
∑

i=1
Ni

)2

−
n
∑

i=1
Ni(

n
∑

i=1
Ni

)2

=

n
∑

i=1
Ni−1

n
∑

i=1
Ni

(22)

Similarly, for gβα(r)

gβα(r) =

n
∑

i=1
Nigiα(r)

n
∑

i=1
Ni

=

n
∑

i=1
Ni

n
∑

i=1
Ni

= 1 (23)

Hence, for an ideal gas, Eqs. (20) and (21) provide the correct answer.

S11



III. KIRKWOOD–BUFF INTEGRALS FOR PSEUDO–BINARY MIXTURES

For fluid mixtures, KBIs are useful to investigate the affinity between different components. Var-

ious thermodynamic properties can be computed from KBIs.3,5 The KB theory was derived for in-

finitely large and open systems. However, recently a number of methods were developed to com-

pute KBIs from molecular simulations of finite and closed systems. In this study, we implement

the method of Krüger and co–workers6–8 where the values of KBIs in the thermodynamic limit G∞

αβ

are computed using KBIs of finite and open subvolumes embedded in a larger reservoir (e.g. sim-

ulation box). The expression of KBIs of finite subvolumes GV
αβ

is6

GV
αβ

=
∫ L

0

[
gαβ (r)−1

]
4πr2w(x)dr (24)

where L is the size of the subvolume, and w(x) is a function that depends on the shape and dimen-

sionality of the subvolume. For a 3D spherical subvolume with diameter L, w(x) = 1 − 3x/2 +

x3/2 where x = r/L is the dimensionless distance. KBIs of finite subvolumes GV
αβ

scale with the

inverse size of the system,6,8–10

GV
αβ

(L) = G∞

αβ
+

F∞

αβ

L
(25)

where F∞

αβ
is a term that relates to surface effects of computing KBIs of small subvolumes. This

scaling can be used to obtain G∞

αβ
. Various methods has been recently investigated to extrapolate

KBIs to the thermodynamic limit.10 It was found that the easiest approach is to plot the product LGV
αβ

as a function of L. The KBI in the thermodynamic limit is found from the slope of this line, and

the surface term F∞

αβ
is found from the intercept. Furthermore, we address the finite-size effects

related to RDFs by applying the Ganguly and van der Vegt correction11.

To compute KBIs of a pseudo binary mixture, the steps below can be followed:

1. Using molecular simulations, compute RDFs of the ternary mixture: α , θ and γ (e.g. urea,

choline and chloride).

2. Correct RDFs for finite-size effects (here, we are using the Ganguly and van der Vegt cor-

rection11).

3. Use Eqs. (20) and (21) to compute RDFs of the pseudo binary mixture (α and β ) from RDFs

of the ternary mixture (α , θ and γ).
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4. Numerically integrate RDFs up to half the box size (Lbox/2) to compute GV
αβ

(Eq. (24)).

5. Plot LGV
αβ

as a function of the diameters of the spherical subvolumes L.

6. Fit the linear regime to obtain G∞

αβ
(Eq. (25)).

In this work, the values of KBIs in the thermodynamic limit G∞

αβ
are used to compute the thermo-

dynamic factor Γ and partial molar volumes. For the computations of Γ , mole fractions are needed.

For a pseudo binary mixture, mole fractions are calculated as:

xα =
Nα

Nα +Nθ +Nγ

(26)

xβ = 1− xα (27)
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IV. MAXWELL–STEFAN AND FICK DIFFUSION COEFFICIENTS FOR

PSEUDO–BINARY MIXTURES

Maxwell-Stefan diffusion (MS) coefficient in a three-dimensional system can be computed from

the Onsager coefficients (Λi j). Onsager coefficients are defined as the cross-correlation of the dis-

placement of the molecules of species i and j in a multicomponent mixture:12,13

Λi j = lim
t→∞

1
2t

1
3N

〈(
Ni

∑
k=1

[rk,i(t)− rk,i(0)]

)
.

(
N j

∑
l=1

[rk, j(t)− rk, j(0)]

)〉
(28)

where N, Ni and Ni are the total number of molecules, number of molecules of species i and j, re-

spectively. The matrix of Onsager coefficients has a symmetric nature, and these coefficients are

described in a reference frame in which center of mass velocity is zero.14 Thus, we can correlate

the Onsager coefficients of a binary mixture in terms of the molar masses of the two components

α and β (Mα and Mβ ):14

Λαβ =−
[

Mα

Mβ

]
Λαα =−

[
Mβ

Mα

]
Λββ (29)

For binary mixtures, there is a single MS and Fick difussion coefficient defined. The MS diffusion

coefficient D̄ is related to the Onsager coefficients by:15

D̄ =

[
(Mβ + xα(Mα −Mβ ))

2

xαxβ M2
β

]
Λαα (30)

For a binary liquid mixture, the Fick diffusion coefficient D is related to the the MS diffusion co-

efficient by the matrix of thermodynamic factors, which describes the non-ideality of a mixture.16

D = Γ D̄ (31)

In the above equation, the thermodynamic factor (Γ ) can be computed from Kirkwood-Buff Inte-

grals.14

A. Pseudo-binary mixture

In a conventional ternary system consisting of molecules of α , θ and γ , there are six Onsager co-

efficients as Λαα , Λαθ , Λαγ , Λθθ , Λθγ , and Λγγ . In a pseudo-binary system, there are only three
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onsager coefficients that are interdependent according to Eq. (29). A pseudo-binary system con-

sist of an independent and an indistinguishable species, which could be described as molecules of

α and β=(θ+γ), respectively. For this pseudo-binary system, three Onsager coefficients are Λαα ,

Λαβ , and Λββ .

To compute Onsager coefficients of the pseudo-binary system Λαα , Λαβ , and Λββ

1. Perform MD simulations of the ternary systems consisting of α , θ and γ molecules.

2. Compute Onsager coefficients for this ternary system. (Λαα , Λαθ , Λαγ , Λθθ , Λθγ , and Λγγ )

using MSDs obtained from the OCTP tool in LAMMPS.17 Eq. (28) requires information on

the total number of molecules, which is N = Nα +Nθ +Nγ .

3. The value of Λαα is identical in the ternary and pseudo-binary systems. Use Λαα in Eq. (30)

to compute MS diffusion coefficient of the pseudo-binary mixture.

4. In Eq. (30), molecular weights (Mα and Mβ ) of the pseudo-binary mixture are essential. Mβ

is the average molecular weight of the indistinguishable particle, computed from:

Mβ =
Nθ Mθ +NγMγ

Nθ +Nγ

(32)

in the case of a salt solution Nγ = Nθ :

Mβ =
Mθ +Mγ

2
(33)

5. For pseudo-binary mixtures, the mole fractions defined in Eqs. (26) and (27) can be used when

applying Eq. (30).

6. Fick diffusion coefficients are computed using Eq. (31).
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V. ADDITIONAL SIMULATION RESULTS

Figure S2: Radial Distribution Functions of choline chloirde and urea at 343.15 K, 1 atm and various mole

fractions of urea (as defined in Eq. (26)).
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VI. RAW SIMULATION DATA

Table SVI: Computed densities of ChCl and urea mixtures at 343.15 K and 1 atm as a function of

the mole fraction of urea (as defined in Eq. (26)). The experimental density at xUrea=0.5 was

measured as 1170.8 kg/m3 in the study by Yadav et al.18

xUrea ρ/[kg/m3]

0.20 1077.8

0.25 1094.1

0.33 1123.3

0.41 1151.9

0.50 1188.0

0.60 1232.1

0.67 1263.4

0.71 1286.9
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Table SVII: Computed viscosities of ChCl and urea mixtures at 343.15 K and 1 atm as a function

of the mole fraction of urea (as defined in Eq. (26)). The experimental viscosity at xUrea=0.5 was

measured as 41.6 mPa.s in the study by Yadav et al.18

xUrea η /[mPa s]

0.20 71±4

0.25 64±5

0.33 57±5

0.41 46±4

0.50 38±3

0.60 31±3

0.67 27±3

0.71 24±2
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Table SVIII: Finite-size effects corrected self-diffusion coefficients of Ch+, Cl-, and Urea

molecules at 343.15 K and 1 atm as a function of the mole fraction of urea (as defined in

Eq. (26)).

D∞
Self/[10-11 m2 s-1]

xUrea Urea Choline Chloride

0.20 4.3±0.1 2.3±0.1 2.9±0.1

0.25 4.5±0.1 2.47±0.04 3.13±0.05

0.33 5.1±0.2 2.82±0.02 3.6±0.1

0.41 5.71±0.03 3.3±0.1 4.21±0.04

0.50 6.5±0.3 3.9±0.1 5.1±0.1

0.60 7.4±0.4 4.62±0.05 6.2±0.1

0.67 8.4±0.5 5.3±0.1 7.4±0.2

0.71 9.1±0.7 5.8±0.1 8.2±0.3
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Table SIX: Computed ionic conductivities of ChCl and urea mixtures at 343.15 K and 1 atm as a

function of the mole fraction of urea (as defined in Eq. (26)).

xUrea κ/[mPa s−1]

0.20 0.70±0.02

0.25 0.72±0.01

0.33 0.75±0.01

0.41 0.80±0.01

0.50 0.85±0.02

0.60 0.87±0.01

0.67 0.88±0.02

0.71 0.87±0.02
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Table SX: Kirkwood-Buff Integrals of ChCl and urea mixtures at 343.15 K and 1 atm as a

function of the mole fraction of urea (as defined in Eq. (26)). The term G f is computed from:

G11 +G22 +2G12.

Kirkwood-Buff Integrals

xUrea GUrea-Urea/[Å
3
] GChCl-Urea/[Å

3
] GChCl-ChCl/[Å

3
] Gf/[Å

3
]

0.20 -147±15 -51±2 -120±1 -164±18

0.25 -130±12 -45±2 -120±2 -156±17

0.33 -100±1 -56±1 -129±1 -120±2

0.41 -73±5 -63±2 -133±2 -76±12

0.50 -63±5 -69±3 -137±2 -69±8

0.60 -66±2 -70±2 -150±5 -77±2

0.67 -64±1 -72±4 -155±1 -73±5

0.71 -64±3 -76±4 -164±7 -70±9
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Table SXI: Thermodynamic factors, finite-size corrected Maxwell-Stefan diffusion coefficients,

and finite-size corrected Fick diffusion coefficients of ChCl and urea mixtures at 343.15 K and 1

atm as a function of the mole fraction of urea (as defined in Eq. (26)).

xUrea Γ D̄∞/[10-11 m2 s-1] D∞/[10-11 m2 s-1]

0.20 1.33±0.04 3.9±0.2 5.2±0.2

0.25 1.38±0.06 4.0±0.2 5.5±0.2

0.33 1.35±0.01 4.2±0.2 5.7±0.1

0.41 1.26±0.05 4.4±0.3 5.5±0.3

0.50 1.21±0.05 4.8±0.2 5.8±0.2

0.60 1.27±0.04 5.1±0.2 6.5±0.2

0.67 1.25±0.04 5.4±0.2 6.8±0.2

0.71 1.24±0.06 5.7±0.3 7.1±0.3
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Table SXII: Partial molar volumes of ChCl and urea mixtures at 343.15 K and 1 atm as a

function of the mole fraction of urea (as defined in Eq. (26)).

Partial Molar Volumes

xUrea υChCl/[Å
3molecule−1] υUrea/[Å

3molecule−1]

0 113.1 NA

0.20 113.8 66.9

0.25 114.4 65.6

0.33 113.7 66.9

0.41 113.6 67.3

0.50 112.7 68.2

0.60 112.2 68.4

0.67 110.4 69.2

0.71 111.1 69.2

1 NA 68.7
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