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Brick-CFCMC is an open-source software package for force field-based Monte Carlo simu-

lations in open ensembles (e.g. the Grand-Canonical Ensemble,1,2 the Gibbs Ensemble,3,4

and, the Reaction Ensemble5). It uses the Continuous Fractional Component method6–10

to obtain phase and/or reaction equilibria. One can also calculate properties such as chem-

ical potentials, partial molar enthalpies, and partial molar volumes directly from a single

simulation.6–8,11 Brick-CFCMC is written in Fortran 90/95, terminal based, and works most

conveniently in combination with the Bash shell. This document contains a description

of some of the features in Brick-CFCMC. For a more detailed overview of the possibili-

ties of Brick-CFCMC, we refer the reader to the manual of Brick which can be found at

https://gitlab.com/ETh_TU_Delft/Brick-CFCMC

Origin of the name Brick

This software package is called Brick after the character Brick Heck, from the TV series The

Middle, whose parents gave him this name in the hope of that giving him a special name

would make him do special things.
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Copyright (c) 2020 R. Hens, A. Rahbari, S. Caro-Ortiz, N. Dawass, M. Erdős,

A. Poursaeidesfahani, H.S. Salehi, A.T. Celebi, M. Ramdin, O.A. Moultos,

D. Dubbeldam, and T.J.H. Vlugt

Permission is hereby granted, free of charge, to any person obtaining a copy

of this software and associated documentation files (the "Software"), to deal

in the Software without restriction, including without limitation the rights

to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

copies of the Software, and to permit persons to whom the Software is

furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in

all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,

FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE

AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER

LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN

THE SOFTWARE.
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The Continuous Fractional Component Method

The Continuous Fractional Component (CFC) method uses expanded versions of thermo-

dynamic ensembles.7–10,12 Extra molecule(s) are added to the system, so-called fractional

molecules, with an additional degree of freedom: the fractional parameter λ. Other molecules

in the system, that are not the fractional molecules, are referred to as whole molecules. In-

teractions of fractional molecule(s) are scaled by the parameter λ. It ranges from 0, which

means that the fractional molecule does not have any interaction with surrounding molecules,

to 1, which means full (normal) interactions with the whole molecules. New Monte Carlo

trial moves are introduced which facilitate the transfer of molecules in the system. The CFC

method makes simulations more efficient because of higher acceptance probabilities for the

transfer of molecules when λ is close to 0 and identity changes when λ is close to 1. It

has been shown that the presence of a fractional molecule(s) has a negligible effect on the

thermodynamic properties of the system.13

Ensembles and Partition Functions

In this section, we list the different ensembles that can be used in Brick-CFCMC (hereafter

referred to as Brick). We also provide the partition functions for each of these ensembles.

Here, we consider the partition functions for the expanded (CFC) ensembles with a single

fractional molecule. Deriving the partition functions for ensembles with more than one

fractional molecule is straightforward and left to the reader as an exercise.

NVT

The NVT ensemble has the following partition function:14

QNVT =
V N

Λ3NN !

∫
dsN exp[−βU(sN)] (S1)
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N is the number of molecules, V is the volume of the system, Λ is the thermal wavelength,

sN is the scaled coordinate vector of all molecules, and U is the potential energy.

CFCNVT

The CFC version of the NVT ensemble has the following partition function:6

Q
CFC

NVT =
V N+1

Λ3(N+1)N !

∫ 1

0

dλ

∫
dsN exp[−βU(sN)] (S2)

×
∫

dsfrac exp[−βUfrac(sfrac, s
N , λ)] (S3)

N is the number of whole molecules, V is the volume of the system, Λ is the thermal

wavelength, sN is the scaled coordinate vector of all molecules, U is the potential energy

(excluding the interactions of the fractional molecule), Ufrac is the potential energy of the

fractional molecule(s) (this term also includes the interactions between fractional molecules

in case there is more than one fractional molecule in the system), λ ∈ [0, 1] is the fractional

parameter, and sfrac is the scaled coordinate vector of the fractional molecule.

NPT

The NPT ensemble has the following partition function:14

QNPT =
βP

Λ3NN !

∫
dV V N exp[−βPV ]

∫
dsN exp[−βU(sN)] (S4)

N is the number of molecules, V is the volume of the system, P is the imposed pressure, Λ

is the thermal wavelength, sN is the scaled coordinate vector of all molecules, and U is the

potential energy.
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CFCNPT

The CFC version of the NPT ensemble has the following partition function:6

Q
CFC

NPT =
βP

Λ3(N+1)N !

∫ 1

0

dλ

∫
dV V N+1 exp[−βPV ] (S5)

×
∫

dsN exp[−βU(sN)]

∫
dsfrac exp[−βUfrac(sfrac, s

N , λ)] (S6)

N is the number of whole molecules, V is the volume of the system, P is the imposed

pressure, Λ is the thermal wavelength, sN is the scaled coordinate vector of all molecules,

U is the potential energy (excluding the interactions of the fractional molecule), Ufrac is

the potential energy of the fractional molecule(s) (this term also includes the interactions

between fractional molecules in case there is more than one fractional molecule in the system),

λ ∈ [0, 1] is the fractional parameter, and sfrac is the scaled coordinate vector of the fractional

molecule.

Gibbs Ensemble at constant total volume

The Gibbs Ensemble combined with the CFC method can be used to simulate phase equi-

libria.7,12 There are two simulation boxes that can exchange molecules and volume. In this

ensemble, the fractional molecule can be transferred between the two simulation boxes (de-

noted by i = 1 and i = 2). It has the following partition function when the total volume is
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constant:

Q
CFC

GE,NV T =
1

Λ3(NT+1)NT!

2∑
i=1

NT∑
N1=0

NT!

N1!(NT −N1)!

∫ 1

0

dλ (S7)

×
∫ VT

0

dV1V
N1+δi1

1 (VT − V1)NT−N1+δi2 (S8)

×
∫

dsN1 exp[−βU1(sN1)] (S9)

×
∫

dsNT−N1 exp[−βU2(sNT−N1)] (S10)

×
(
δi1

∫
dsfrac exp[−βUfrac,1(sfrac, s

N1 , λ)] (S11)

+ δi2

∫
dsfrac exp[−βUfrac,2(sfrac, s

NT−N1 , λ)]
)

(S12)

Nj and Vj are the number of whole molecules and volume of simulation box j, NT is the

total number of whole molecules in the two simulation boxes, VT is the total volume of the

two simulation boxes, Λ is the thermal wavelength, sN is the scaled coordinate vector of all

molecules, U is the potential energy, Ufrac is the potential energy of the fractional molecule,

λ ∈ [0, 1] is the fractional parameter, sfrac is the scaled coordinate vector of the fractional

molecule, and the δ-function is used to indicate if the fractional molecule is in simulation

box i (δij = 0 if i 6= j and δij = 1 if i = j)

Gibbs Ensemble at constant pressure

The Gibbs Ensemble combined with the CFC method can be used to simulate phase equilib-

ria.7 There are two simulation boxes that can exchange molecules and change volume. This

ensemble can only be used for simulations of two or more components, otherwise the phase

rule would be violated. Here, we consider the ensemble for a single component for simplic-

ity. In this ensemble the fractional molecule can be transferred between the two simulation
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boxes. It has the following partition function at constant pressure:

Q
CFC

GE,NPT =
βP

Λ3(NT+1)NT!

2∑
i=1

NT∑
N1=0

NT!

N1!(NT −N1)!

∫ 1

0

dλ (S13)

×
∫

dV1V
N1+δi1

1 exp[−βPV1] (S14)

×
∫

dV2V
NT−N1+δi2

2 exp[−βPV2] (S15)

×
∫

dsN1 exp[−βU1(sN1)] (S16)

×
∫

dsNT−N1 exp[−βU2(sNT−N1)] (S17)

×
(
δi1

∫
dsfrac exp[−βUfrac,1(sfrac, s

N1 , λ)] (S18)

+ δi2

∫
dsfrac exp[−βUfrac,2(sfrac, s

NT−N1 , λ)]
)

(S19)

Nj and Vj are the number of whole molecules and volume of simulation box j, NT is the

total number of whole molecules in the two simulation boxes, P is the imposed pressure,

Λ is the thermal wavelength, sN is the scaled coordinate vector of all molecules, U is the

potential energy, Ufrac is the potential energy of the fractional molecule, λ ∈ [0, 1] is the

fractional parameter, sfrac is the scaled coordinate vector of the fractional molecule, and the

δ-function is used to indicate if the fractional molecule is in simulation box i (δij = 0 if i 6= j

and δij = 1 if i = j)

Reaction Ensemble at constant volume

The Reaction Ensemble combined with the CFC method can be used to simulate reaction

equilibria.8 Fractional molecules are either reactants or products. The chemical reaction is

mimicked as additional Monte Carlo trial moves that transform reactants into products and

S8



vice versa. It has the following partition function at constant volume:

Q
CFC

RE,V =
∞∑

N1=0

· · ·
∞∑

NS=0

1∑
δ=0

∫ 1

0

dλ (S20)

× exp

[
R∑
i=1

βµi (Ni + δνi) + (Ni + δνi) ln

(
V qi
Λ3
i

)
− lnNi!

]
(S21)

× exp

[
S∑

i=R+1

βµi (Ni + (1− δ) νi) + (Ni + (1− δ) νi) ln

(
V qi
Λ3
i

)
− lnNi!

]
(S22)

×
∫

dsN exp[−βU(sN)]

∫
dsNfrac

frac exp[−βU(sNfrac
frac , s

N , λ, δ)] (S23)

Ni is the number of whole molecules of component i, Λi is the thermal wavelength, qi is the

partition function of the isolated molecule excluding the translational part (see the Appendix

of this document for details), µi is the chemical potential, νi is the stoichiometric coefficient,

δ indicates the reaction step (δ = 0 indicates that the fractional molecules are reactants

and δ = 1 indicates that the fractional molecules are products), sN is the scaled coordinate

vector of all molecules, U is the potential energy (excluding the interactions of fractional

molecules), Ufrac is the potential energy of the fractional molecule (including interactions

between fractional molecules), λ is the fractional parameter, and sfrac is the scaled coordinate

vector of the fractional molecule. The components are labeled such that components 1 to R

are reactants, and components R + 1 to S are products. Multiple reactions can be defined

in the Reaction Ensemble.

Reaction Ensemble at constant pressure

The Reaction Ensemble combined with the CFC method can be used to simulate reaction

equilibria.8 Fractional molecules are either reactants or products. The chemical reaction is

mimicked as additional Monte Carlo trial moves that transform reactants into products and
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vice versa. It has the following partition function at constant pressure:

Q
CFC

RE,P =βP
∞∑

N1=0

· · ·
∞∑

NS=0

1∑
δ=0

∫ 1

0

dλ

∫
dV exp[−βPV ] (S24)

× exp

[
R∑
i=1

βµi (Ni + δνi) + (Ni + δνi) ln

(
V qi
Λ3
i

)
− lnNi!

]
(S25)

× exp

[
S∑

i=R+1

βµi (Ni + (1− δ) νi) + (Ni + (1− δ) νi) ln

(
V qi
Λ3
i

)
− lnNi!

]
(S26)

×
∫

dsN exp[−βU(sN)]

∫
dsNfrac

frac exp[−βU(sNfrac
frac , s

N , λ, δ)] (S27)

Ni is the number of whole molecules of component i, Λi is the thermal wavelength, qi is the

partition function of the isolated molecule excluding the translational part (see the Appendix

of this document for details), µi is the chemical potential, νi is the stoichiometric coefficient,

δ indicates the reaction step (δ = 0 indicates that the fractional molecules are reactants

and δ = 1 indicates the fractional molecules are products), P is the imposed pressure, sN

is the scaled coordinate vector of all molecules, U is the potential energy (excluding the

interactions of fractional molecules), Ufrac is the potential energy of the fractional molecule

(including interactions between fractional molecules), λ is the fractional parameter, and sfrac

is the scaled coordinate vector of the fractional molecule. The components are labeled such

that components 1 to R are reactants, and components R + 1 to S are products. Multiple

reactions can be defined in the Reaction Ensemble.

Grand-Canonical Ensemble

The Grand-Canonical Ensemble combined with the CFC method can be used to study ab-

sorption processes in liquids.9 There is one simulation box that can exchange molecules with
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an ideal gas reservoir. It has the following partition function at constant volume:

Q
CFC

GC =
∞∑
N=0

exp [βµN ]V N+1

Λ3(N+1)N !

∫ 1

0

dλ

∫
dsN exp[−βU(sN)] (S28)

×
∫

dsfrac exp[−βU(sfrac, s
N , λ)] (S29)

N is the number of whole molecules, V is the volume of the system, Λ is the thermal

wavelength, µ is the imposed chemical potential, sN is the scaled coordinate vector of all

molecules, U is the potential energy (excluding the interactions of the fractional molecules),

Ufrac is the potential energy of the fractional molecule (including interactions between frac-

tional molecules), λ ∈ [0, 1] is the fractional parameter, and sfrac is the scaled coordinate

vector of the fractional molecule.

Osmotic Ensemble

The Osmotic Ensemble combined with the CFC method is a variant of the Grand-Canonical

Ensemble with multiple components.9 It imposes a constant pressure and fixes one extensive

parameter. This ensemble has the following partition function:

Q
CFC

Osmotic =
∞∑
N=0

exp [βµN ]

Λ3(N+1)N !

∫ 1

0

dλ

∫
dV V N+1 exp[−βPV ] (S30)

×
∫

dsN exp[−βU(sN)]

∫
dsfrac exp[−βU(sfrac, s

N , λ)] (S31)

N is the number of whole molecules, V is the volume of the system, P is the imposed

pressure, Λ is the thermal wavelength, µ is the imposed chemical potential, sN is the scaled

coordinate vector of all molecules, U is the potential energy (excluding the interactions of

the fractional molecules), Ufrac is the potential energy of the fractional molecule (including

interactions between fractional molecules), λ ∈ [0, 1] is the fractional parameter, and sfrac is
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the scaled coordinate vector of the fractional molecule.

Fractional Molecules

All expanded ensembles make use of fractional molecules. In Brick, we can distinguish

between four different types:

• NVT/NPT : these fractional molecules are used as probes to obtain partial molar

properties.6,11 Furthermore, these fractional molecules also enhance the sampling of

other properties in dense systems.

• Gibbs Ensemble: these fractional molecules are used to facilitate the exchange of

molecules between two simulation boxes to obtain phase equilibrium.7

• Reaction Ensemble: these fractional molecules are used to facilitate the transformation

of reactants into products (and vice versa) to obtain reaction equilibrium.8

• Grand-Canonical Ensemble: these fractional molecules are used to facilitate the ex-

change of molecules between the simulation box and reservoir.9 This also applies to

the Osmotic Ensemble.

The fractional molecules from the NVT/NPT ensembles (probes) can be used in any other

ensemble. The fractional molecules from the Gibbs Ensemble and Reaction Ensemble can

also be combined. However, the fractional molecules from the Grand-Canonical Ensemble

can not be combined with the Gibbs Ensemble at constant pressure or the Reaction Ensemble

at constant pressure unless at least one extensive parameter is fixed.

The Fractional Parameter

The fractional parameter λ is used to scale interactions of the fractional molecules in the

system. When λ = 0, the fractional molecule has no interactions with its surroundings.
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For λ = 1, the interactions of the fractional molecule are the same as a whole molecule.

Between these two state points, a path can be chosen how to "switch on" the interactions

from λ = 0 to λ = 1. The LJ interactions and electrostatic interactions are scaled differently,

using λLJ and λEL, respectively. The following procedure is used in Brick. Starting from

λ = 0, with increasing λ we only increase the Lennard-Jones interactions of the fractional

molecule i.e. increase λLJ and keep λEL = 0. Then, at a certain chosen value of λ, which

we refer to as λs, we reach λLJ = 1. From that point (till λ = 1) we start increasing the

electrostatic interactions of the fractional molecule i.e. increase λEL and keep λLJ = 1. This

way we gradually increase first the LJ interactions and then the electrostatic interactions

which is more efficient in simulations than scaling both interactions at the same time.15

Intramolecular interactions can be changed in the same way, but only for fractional molecules

in the NVT/NPT ensembles and Gibbs Ensemble, and not in the Reaction Ensemble and

Grand-Canonical/Osmotic Ensemble. Simulations of multicomponent systems often require

multiple fractional molecules, each with a fractional parameter. This allows the calculation

of chemical potentials and partial molar properties of each component in the mixture. It

is also possible to define a fractional group consisting of several molecules. For example, in

ionic systems, to maintain charge neutrality, a fractional group consists of an equal number

of anions and cations. The strength of the interactions of the each fractional molecule in the

fractional group is regulated by a single fractional parameter λ. Similarly, in the Reaction

Ensemble, a fractional group is defined for the reactants or the products. All molecules in

the fractional group share the same fractional parameter. For more details the reader is

referred to the manual of Brick.16
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Figure S1: Translation Trial Move: a randomly selected molecule is displaced by a random
distance in a random direction.

Monte Carlo Trial Moves and Acceptance Rules

In this section, we introduce the Monte Carlo trial moves and acceptance rules for the

different ensembles in Brick. During a simulation, one trial move is randomly selected from

the available trial moves at each MC step. For a more detailed derivation and description of

the trial moves, we refer the reader to the manual of Brick.16

Translation Trial Moves

In a translation trial move, one molecule is selected at random and moved in a random

direction by a random distance (Figure S1). The rest of the system remains unchanged. The

acceptance rule for this trial move is:

acc(o→ n) = min(1, exp[−β∆U ]) (S32)

where ∆U is the change in the intermolecular energy.
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Pair and Cluster Translations

In some systems, molecules are strongly bonded to each other, and in this case, it can be

more efficient to displace two or more molecules in one trial move. For this reason, in Brick,

it is possible to use pair translation trial moves17 and cluster translation trial moves. In the

pair translation trial move, two molecules are displaced in a random direction by a random

distance. In the cluster translation trial move a cluster of molecules is displaced in a random

direction. For more details about these trial moves we refer the reader to the manual of

Brick.16

Smart Translations

The efficiency of the translation trial moves can be increased using the information on the

forces on the molecules in the system. Instead of generating random displacements, one

can choose to generate the displacement based on the forces acting on the molecules.18–20

Therefore, in Brick, there is the possibility to use so-called smart translation trial moves.

This trial move displaces each molecule based on the force acting on them. For more details

about this trial move we refer the reader to the manual of Brick.16
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Figure S2: Rotation Trial Move: a randomly selected molecule is rotated by a random angle
around a random axis.

Rotation Trial Moves

In a rotation trial move, a randomly selected molecule is rotated around a random axis by a

random angle (Figure S2). The rest of the system remains unchanged. The acceptance rule

for this trial move is:

acc(o→ n) = min(1, exp[−β∆U ]) (S33)

where ∆U is the change in the intermolecular energy.

Pair and Cluster Rotations

In some systems, molecules are strongly bonded to each other, and in this case, it can be

more efficient to rotate two or more molecules in one trial move. For this reason, in Brick,

it is possible to use pair rotation trial moves17 and cluster rotation trial moves. In the pair

rotation trial move, two molecules are rotated along one common axis (going through the

geometric center) by a random angle. In the cluster rotation trial move a cluster of molecules

is rotated along one common axis (going through the geometric center) by a random angle.
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For more details about these trial moves we refer the reader to the manual of Brick.16

Smart Rotations

The efficiency of the rotation trial moves can be increased using the torques on the molecules

in the system. Instead of generating random angles for rotation one can choose to generate

the angles based on the torques acting on the molecules.18–20 Therefore, in Brick, there is the

possibility to use so-called smart rotation trial moves. This trial move rotates each molecule

based on the torque acting on them. For more details about this trial move we refer the

reader to the manual of Brick.16
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Figure S3: Bending Trial Move: a randomly selected bond angle is randomly changed in the
same plane in a randomly selected molecule.

Bending Trial Moves

In a bending trial move, in a randomly selected molecule the bond angle between randomly

selected atoms is changed by a random value, while keeping the atoms of the bending angle

in the same plane (Figure S3). The rest of the system remains unchanged. The acceptance

rule for this trial move is:

acc(o→ n) = min

(
1,

sin θn

sin θo

exp[−β∆U ]

)
(S34)

where θo and θn are the old and new bond angles, respectively, and ∆U is the change in the

intermolecular and intramolecular energy.
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Figure S4: Torsion Trial Move: a molecule is selected at random and a randomly selected
torsional angle in this molecule is changed.

Torsion Trial Moves

In a torsion trial move, in a randomly selected molecule a randomly selected torsional angle

is changed by a random value (Figure S4). The rest of the system remains unchanged. The

acceptance rule for this trial move is:

acc(o→ n) = min(1, exp[−β∆U ]) (S35)

where ∆U is the change in the intermolecular and intramolecular energy.
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Figure S5: Volume Change Trial Move: the volume of the simulation box is changed by a
random value.

Volume Change Trial Moves

In a volume change trial move, the volume of the simulation box is changed by a random

value Vn = Vo + ∆V (Figure S5). The centers of mass of the molecules are scaled according

to this volume change but the intramolecular distances for each molecule remain unchanged.

The acceptance rule for this trial move is:

acc(o→ n) = min

(
1, exp[−βP (Vn − Vo)− β∆U +N ln

(
Vn

Vo

)
]

)
(S36)

where P is the imposed pressure, ∆U is the change in the intermolecular energy only (since

changing the volume does not change the intramolecular interactions), and N is the total

number of molecules in the system (including the fractional molecules).
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Figure S6: Lambda Trial Move: the value of the fractional parameter λ is changed by a
random value which changes the interaction strength of the fractional molecule with its
surroundings. The new value of λ should always be in the interval [0, 1].

NVT/NPT Lambda Trial Moves

In this trial move, the value of the fractional parameter λ is changed by a random value

(Figure S6). We have the following acceptance rule:

acc(o→ n) = min(1, exp[−β∆Ufrac]) (S37)

where ∆Ufrac is the change in energy of the fractional molecule (including the intramolecular

energy if those interactions are scaled). Note that λ ∈ [0, 1]. If λ is outside this interval the

trial move is rejected immediately.
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Figure S7: Reinsertion Trial Move: the fractional molecule is removed from the system
and reinserted at a random position in the simulation box with a random orientation. The
internal configuration does not change.

NVT/NPT Reinsertion Trial Moves

In this trial move, the fractional molecule is reinserted at a random position with a random

orientation in the simulation box (Figure S7). We have the following acceptance rule:

acc(o→ n) = min(1, exp[−β∆Ufrac]) (S38)

where ∆Ufrac is the change in intermolecular energy of the fractional molecule. This trial

move has a high acceptance probability for λ close to 0.
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Figure S8: Identity Change Trial Move: the fractional molecule is transformed into a whole
molecule and a randomly selected whole molecule is transformed into a fractional molecule
with the same value of λ.

NVT/NPT Identity Change Trial Moves

In this trial move, the fractional molecule is transformed into a whole molecule while at the

same time a randomly selected whole molecule of the same component is transformed into a

fractional molecule with the same fractional parameter λ (Figure S8). We have the following

acceptance rule:

acc(o→ n) = min(1, exp[−β∆Ufrac]) (S39)

where ∆Ufrac is the change in energy of the fractional molecule and whole molecule (including

the intramolecular energy if this energy is scaled). This trial move has a high acceptance

probability for λ close to 1.
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Figure S9: Gibbs Ensemble Lambda Trial Move: the value of the fractional parameter λ
is changed by a random value which increases or decreases the interaction strength of the
fractional molecule with its surroundings. The new value of λ should always be in the interval
[0, 1].

Gibbs Ensemble Lambda Trial Moves

In this trial move, the value of the fractional parameter λ is changed by a random value

(Figure S9). We have the following acceptance rule:

acc(o→ n) = min(1, exp[−β∆Ufrac]) (S40)

where ∆Ufrac is the change in energy of the fractional molecule (including the intramolecular

energy if those interactions are scaled). Note that λ ∈ [0, 1]. If λ is outside this interval the

trial move is rejected immediately.
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Figure S10: Gibbs Ensemble Swap Trial Move: the fractional molecule is transferred from
one simulation box to the other. The position and orientation in the new simulation box are
generated at random and λ remains unchanged.

Gibbs Ensemble Swap Trial Moves

In this trial move, the fractional molecule is removed from one simulation box and reinserted

at a random position with a random orientation in the other simulation box leaving λ

unchanged (Figure S10). Transferring the fractional molecule from simulation box i to

simulation box j 6= i results in the following acceptance rule:

acc(o→ n) = min

(
1,
Vj
Vi

exp[−β∆U ]

)
(S41)

where ∆U is the total energy change in both simulation boxes (including the intramolecular

energy if those interactions are scaled), and Vi is the volume of simulation box i. This trial

move has a high acceptance probability for λ close to 0.
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Figure S11: Gibbs Ensemble Identity Change Trial Move: the fractional molecule is trans-
formed into a whole molecule and a randomly selected molecule in the other simulation box
is transformed into a fractional molecule. The value of the fractional parameter remains
unchanged.

Gibbs Ensemble Identity Change Trial Moves

In this trial move, the fractional molecule is transformed into a whole molecule while at the

same time a randomly selected molecule in the other simulation box is transformed into a

fractional molecule (Figure S11). Changing the fractional molecule in simulation box i into

a whole molecule and changing a whole molecule in simulation box j 6= i into a fractional

molecule results in the following acceptance rule:

acc(o→ n) = min

(
1,

Nj

Ni + 1
exp[−β∆U ]

)
(S42)

where ∆U is the total energy change in both simulation boxes (including the intramolecular

energy if this energy is scaled), and Ni is the number of whole molecules in box i. This trial

move has a high acceptance probability for λ close to 1.
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Figure S12: Gibbs Volume Change Trial Move: the volume of the simulation box(es) is
randomly changed. For the Gibbs Ensemble at constant volume the total volume of the two
simulation boxes is conserved. For the Gibbs Ensemble at constant pressure one simulation
box is selected at random of which the volume is changed.

Gibbs Ensemble Volume Change Trial Moves

For a volume change (Figure S12), where the total volume of the two simulation boxes is

constant we have V1,n = V1,o ±∆V and V2,n = V2,o ∓∆V , where o and n denote the old and

new configuration. In each simulation box, the centers of mass of the molecules are scaled

according to the volume change but the intramolecular distances for each molecule remain

unchanged. The acceptance rule for this trial move is:

acc(o→ n) = min

(
1,
V N1+δi1

1,n V N2+δi2
2,n

V N1+δi1
1,o V N2+δi2

2,o

exp[−β∆U ]

)
(S43)

where i indicates the simulation box in which the fractional molecule is and ∆U is the

change in the intermolecular energy only, since changing the volume does not change the

intramolecular interactions. Nj,o/n is the total number of whole molecules in simulation box

j, i indicates in which box the fractional molecule is, such that δij indicates if the fractional

molecule is in box j.

If the pressure is constant, the volume of both simulation boxes can be changed inde-

pendently of each other and the acceptance rule reduces to that of the one for the NPT

ensemble:

acc(o→ n) = min

(
1, exp[−βP (Vi,n − Vi,o)− β∆U + (N + δij) ln

(
Vi,n
Vi,o

)
]

)
(S44)
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where P is the imposed pressure, i indicates the simulation box of which the volume is

changed, Vi,o/n is the total number of whole molecules in simulation box i (o and n denote

the old and new configuration), j indicates in which simulation box the fractional molecule is,

and ∆U is the change in the intermolecular energy only since changing the volume does not

change the intramolecular interactions. The δ-function is used to indicate if the fractional

molecule is in simulation box i (δij = 0 if i 6= j and δij = 1 if i = j)
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Figure S13: Reaction Lambda Trial Move: the value of the fractional parameter λ is changed
by a random value which increases or decreases the interaction strength of the fractional
molecule(s) with its surroundings. The new value of λ should always be in the interval [0, 1].

Reaction Ensemble Lambda Trial Moves

In this trial move the value of the fractional parameter λ is changed by a random value

(Figure S13). We have the following acceptance rule:

acc(o→ n) = min(1, exp[−β∆Ufrac]) (S45)

where ∆Ufrac is the change in intermolecular energy of the fractional molecule(s) (intramolec-

ular interactions can not be scaled in the Reaction Ensemble). Note that λ ∈ [0, 1]. If λ is

outside this interval the trial move is rejected immediately.
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Figure S14: Reaction Swap Trial Move: fractional molecules of reactants/products are re-
moved and fractional molecules of the products/reactants are inserted at random positions
with random orientations. The fractional parameter λ remains unchanged.

Reaction Ensemble Swap Trial Moves

In this trial move, the fractional molecules of the reactants/products are removed from the

simulation box and fractional molecules of the products/reactants are inserted at random

positions, with a random orientation and a random internal configuration (Figure S14). For

non-rigid molecules, the configurations of the molecules are generated in a short, separate,

MC simulation of the isolated molecule where only bending and torsion trial moves are used

i.e. the molecules are taken from an ideal gas reservoir. This ensures that their internal

structure is equilibrated. Changing from fractional reactants to fractional products results

in the following acceptance rule:

acc(o→ n) = min

(
1,

R∏
i=1

(
V qi
Λ3
i

)−νi S∏
i=R+1

(
V qi
Λ3
i

)νi
exp[−β∆U ]

)
(S46)

where ∆U is the total intermolecular energy change (intramolecular interactions can not be

scaled in the Reaction Ensemble), V is the volume of the simulation box, Λi is the thermal

wavelength of component i, qi is the partition function of the isolated molecule excluding
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the translational part, and νi is the stoichiometric coefficient. The components are labeled

such that components 1 to R are reactants, and components R + 1 to S are products. This

trial move has a high acceptance probability for λ close to 0.
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Figure S15: Reaction Identity Change Trial Move: fractional molecules of the reac-
tants/products are transformed into whole molecules while randomly selected whole prod-
ucts/reactants are transformed into fractional molecules. The fractional parameter λ remains
unchanged.

Reaction Ensemble Identity Change Trial Moves

In this trial move fractional molecules of the reactants/products are transformed into whole

molecules and randomly selected molecules from the products/reactants are transformed into

fractional molecules with the same fractional parameter (Figure S15). Changing fractional

reactants into whole molecules and whole products molecules into fractional products results

in the following acceptance rule:

acc(o→ n) = min

(
1,

R∏
i=1

Ni!

(Ni + νi)!

S∏
i=R+1

Ni

(Ni − νi)!
exp[−β∆U ]

)
(S47)

Where ∆U is the total intermolecular energy change (intramolecular interactions can not be

scaled in the Reaction Ensemble), Ni is the number of whole molecules of component i, and

νi is the stoichiometric coefficient. The components are labeled such that components 1 to

R are reactants, and components R + 1 to S are products. For the reverse case, fractional

products to fractional reactants, the only difference is the change in signs of the stoichiometric

coefficients νi. For the reverse case, changing fractional products into whole molecules and
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whole reactant molecules into fractional reactants, the only difference is the change in signs

of the stoichiometric coefficients νi. This trial move has a high acceptance probability for λ

close to 1.
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Grand-Canonical/Osmotic Ensemble Lambda Trial Moves

In the Grand-Canonical and Osmotic Ensemble,9 the value of the fractional parameter is

randomly changed. There are three cases to consider:

I. λ < 0. The fractional molecule is removed from the system and a randomly selected

molecule is transformed into a fractional molecule with λ → λ + 1 (Figure S16). The

acceptance rule is:

acc(o→ n) = min

(
1,

N

fβV
exp[−β∆U ]

)
(S48)

II. 0 < λ < 1. This trial move acts like a normal change in λ (Figure S17). The acceptance

rule is:

acc(o→ n) = min (1, exp[−β∆U ]) (S49)

III. 1 < λ. A new fractional molecule is added to the system at a random position, with

a random orientation, and random internal configuration. The configuration of the

molecule is generated in a short, separate, MC simulation of the isolated molecule

where only bending and torsion trial moves are used i.e. the molecules are taken from a

ideal gas reservoir. The new fractional parameter of this fractional molecule is λ→ λ−1

(Figure S18). The acceptance rule is:

acc(o→ n) = min

(
1,

fβV

N + 1
exp[−β∆U ]

)
(S50)

where ∆U is the change in intermolecular energy (intramolecular energy can not be scaled

in the Grand-Canonical/Osmotic Ensemble), N is the number of whole molecules, V is the

volume of the simulation box and f is the fugacity which is related to the excess chemical
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potential: f = N
βV

exp[µexcess/kBT ].8 The fugacity is used as input in Brick and can be

obtained from the excess chemical potential or an equation of state such as the one by Peng

and Robinson.21
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Figure S16: Grand-Canonical Deletion Trial Move: the fractional molecule is removed from
the system and a randomly selected molecule is transformed into a fractional molecule.
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Figure S17: Grand-Canonical Lambda Trial Move: the fractional parameter of the fractional
molecule is changed, increasing or decreasing the strength of its interactions.
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Figure S18: Grand-Canonical Insertion Trial Move: the fractional molecule is transformed
into a whole molecule and a new fractional molecule is inserted at a random position with a
random orientation.
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Weight Functions

With the CFC method, additional degrees of freedom are introduced to the system: the

fractional parameter λ. To make simulations efficient, this parameter should be used to

add a bias to the system such that the observed probability distribution of λ during the

simulation is flat.

• NVT/NPT : the weight function is one-dimensional and only depends on λ: W =

W (λ). It aims for equally probable values of λ.

• Gibbs Ensemble: the weight function is two-dimensional and depends on λ and the

simulation box (i) the fractional molecule is in: W = W (λ, i). It aims for equally

probable values of λ and makes the fractional molecule equally likely to be found in

one of the simulation boxes (50% in simulation box 1 an 50% in simulation box 2).

• Reaction Ensemble: the weight function is two-dimensional and depends on λ and the

reaction step (fractional molecules are reactants: δ = 0 or fractional molecules are

products: δ = 1): W = W (λ, δ). It aims for equally probable values of λ and makes

the fractional molecule equally likely to be found in one of the reaction steps.

• Grand-Canonical Ensemble: the weight function is one-dimensional and only depends

on λ: W = W (λ). It aims for equally probable values of λ.

In a system with more than one fractional molecule the weight functions are independent,22

i.e.:

W (λ1, λ2, ..., λn) =
n∑
i=1

W (λi). (S51)

Interactions

In this section, we consider the potentials that can be used in Brick for intermolecular en

intramolecular interactions.
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Lennard-Jones Interactions

The Lennard-Jones potential has the functional form:

ULJ (rij) = 4εij

[(
σij
rij

)12

−
(
σij
rij

)6
]

(S52)

where εij and σij are the LJ-parameters between sites i and j. There are two commonly

used methods for dealing with the truncation of the potential. One of them is shifting the

potential to 0 at the cutoff radius Rc:

U shifted
LJ (rij) =


ULJ (rij)− ULJ (Rc) rij ≤ Rc

0 rij > Rc

(S53)

Another option is adding an average energy to the system that accounts for the interactions

of the molecules beyond the cutoff radius. This term can be calculated analytically and is

referred to as the analytic tail correction. It equals19

U tailcorrection
LJ =

1

2

∑
i,j

16πNiNjεij
V

(
σ12
ij

9R9
c

−
σ6
ij

3R3
c

)
(S54)

where the sum ranges over all atom types in the system, Ni is the number of atoms of type

i (excluding the fractional molecules), and V is the volume of the simulation box. The

factor 1
2
corrects for counting interactions twice. For fractional molecules the Lennard-Jones

interactions are scaled. The functional form for these interactions is23

ULJ (r, λLJ) = 4λε

 1(
αLJ (1− λLJ)b +

(
r
σ

)c) 12
c

− 1(
αLJ (1− λLJ)b +

(
r
σ

)c) 6
c

 (S55)

where typical values for αLJ, b and c are 0.5, 1, and 6 respectively. The term αLJ(1 −

λLJ)b prevents singularities for small values of r. Shifting this potential at the cutoff is

straightforward. For tail corrections the substitution Ni → Ni+λLJ is applied to Eq. S54.8,24
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Intramolecular LJ interactions are calculated directly from Eq. S52 without truncating the

interactions.

Electrostatic Interactions

There are three methods for handling electrostatic interactions in Brick. The most commonly

used one is the Ewald method.25,26 This method splits the electrostatic interactions in a

short-range and long-range part and uses a Fourier Transform on the long-range part.

UEwald
electrostatic =

1

2

Nm∑
i=1

N i
a∑

a=1

Nm∑
j=1
j 6=i

Nj
a∑

b=1

riajb<Rc

qiaqjb
erfc (αriajb)

riajb
(S56)

+
1

2

Nm∑
i=1

N i
a∑

a=1

Nj
a∑

b=1
b 6=a

riaib<Rc

qiaqib
erfc (αriaib)

riaib
(S57)

− 1

2

Nm∑
i=1

N i
a∑

a=1

Nj
a∑

b=1

qiaqib
1

riaib
(S58)

+
1

2V

∑
~k 6=~0

4π

k2

∣∣∣∣∣∣
Nm∑
i=1

N i
a∑

a=1

qia exp
[
i~k · ~ria

]∣∣∣∣∣∣
2

exp

[
− k2

4α2

]
(S59)

− α√
π

Nm∑
i=1

N i
a∑

a=1

q2
ia (S60)

where Nm is the number of molecules, N i
a is the number of atoms in molecule i, qia is the

partial charge of atom a in molecule i, erfc(x) is the complementary error function, α is a

damping parameter, riajb = | ~ria − ~rjb| is the distance between atom a in molecule i and atom

b in molecule j, and Rc is the cutoff radius. Term S56 is the damped electrostatic potential

for the short-ranged interactions. Terms S57 and S58 are corrections for intramolecular in-

teractions (since they are calculated separately) and are referred to as the exclusion terms.

One could say that term S57 completes the sum over all atoms in the simulation box and

term S58 substracts all intramolecular interactions to obtain the proper intermolecular inter-
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actions. The sum in term S59 ranges over vectors ~k = 2π
L

(nx, ny, nz) with L = V
1
3 (the length

of one side of the simulation box) and integers nx, ny, nz ∈ N. Since this is a converging sum

we can truncate it at a certain maximum vector kmax (or nmax such that nx, ny, nz ≤ nmax).

The Fourier Transform (term S59) makes the Ewald method a computationally expensive

method but can be optimized by storing the values of the double sum.27 Term S60 is the self

interaction.

Since the Ewald method involves the calculation of a Fourier Transform it is computa-

tionally expensive. Therefore, it is also possible to use the Wolf method28, which works

particularly well for dense systems (e.g. liquids). The Wolf method uses the following ex-

pression to calculate electrostatic interactions:

UWolf
electrostatic =

1

2

Nm∑
i=1

N i
a∑

a=1

Nm∑
j=1
j 6=i

Nj
a∑

b=1

riajb<Rc

qiaqjb

(
erfc (αriajb)

riajb
− erfc (αRc)

Rc

)
(S61)

+
1

2

Nm∑
i=1

N i
a∑

a=1

Nj
a∑

b=1
b6=a

riaib<Rc

qiaqib

(
erfc (αriaib)

riaib
− erfc (αRc)

Rc

)
(S62)

− 1

2

Nm∑
i=1

N i
a∑

a=1

Nj
a∑

b=1

qiaqib
1

riaib
(S63)

−
(

erfc (αRc)

2Rc

+
α√
π

) Nm∑
i=1

N i
a∑

a=1

q2
ia (S64)

where the variables and parameters have the same meaning as for the Ewald method. It

should be kept in mind that typically the values for the damping parameters α are different

for the Ewald andWolf method.24 Term S61 is the damped and shifted electrostatic potential.

Terms S62 and S63 are corrections for intramolecular interactions (since they are calculated

separately) and are referred to as the exclusion terms. One could say that term S62 completes

the sum over all atoms in the simulation box and term S63 substracts all intramolecular

interactions to obtain the proper intermolecular interactions. Term S64 is the self interaction.

S42



Although the electrostatic interactions can be accurately calculated using theWolf method,

for some systems artificial structuring around the cutoff distance is a potential issue.29 A

modification of the Wolf method by Fenell and Gezelter30 solves this issue. This is the third

method that can be used in Brick.

UFennell-Gezelter
electrostatic =

1

2

Nm∑
i=1

N i
a∑

a=1

Nm∑
j=1
j 6=i

Nj
a∑

b=1

riajb<Rc

qiaqjb

[
erfc (αriajb)

riajb
− erfc (αRc)

Rc

+

(
erfc (αRc)

R2
c

+
2α√
π

exp [−α2R2
c ]

Rc

)
(riajb −Rc)

]
(S65)

+
1

2

Nm∑
i=1

N i
a∑

a=1

Nj
a∑

b=1
b6=a

riaib<Rc

qiaqib

(
erfc (αriaib)

riaib
− erfc (αRc)

Rc

)
(S66)

− 1

2

Nm∑
i=1

N i
a∑

a=1

Nj
a∑

b=1

qiaqib
1

riaib
(S67)

−
(

erfc (αRc)

2Rc

+
α√
π

) Nm∑
i=1

N i
a∑

a=1

q2
ia (S68)

Term S65 is the damped and shifted electrostatic potential. Terms S66 and S67 are correc-

tions for intramolecular interactions (since they are calculated separately) and are referred

to as the exclusion terms. One could say that term S66 completes the sum over all atoms

in the simulation box and term S67 substracts all intramolecular interactions to obtain the

proper intermolecular interactions. Term S68 is the self interaction.

The electrostatic interactions for fractional molecules are scaled similar to the Lennard-

Jones interactions. This is achieved by substituting riajb → riajb + αEL(1 − λEL) (which

prevents singularities at small distances) and qia → λELqia where we typically chose αEL =

0.01 Å. So far we only considered the intermolecular electrostatic interactions. The in-

tramolecular interactions are calculated separately, directly from the Coulomb potential
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without truncating the interactions:

U intramolecular
electrostatic = γij

qiqj

rij
(S69)

where γij is a scaling factor for the intramolecular electrostatic interactions between atoms

i and j in a molecule.

Simulation Details

Simulations in the combined Gibbs Ensemble and Reaction Ensemble for the esterification

were performed starting from an initial configuration of 900 molecules. The cutoff radius

for Lennard-Jones and electrostatic interactions is 14 Å. Analytic tail corrections for the

Lennard-Jones interactions are used, and the Ewald method is used for electrostatic interac-

tions. Details about the force field parameters can be found in the Supporting Information.

Partition functions of the isolated molecule were obtained from the Gibbs free energy of for-

mation31 and are listed in the Supporting Information. We consider the system at T = 343 K

and P = 1 bar. For equilibrating the system, 5·105 cycles were used, where each cycle consists

of N trial moves (N being the total number of molecules in the system). We study two cases:

(1) all molecules are rigid; (2) all molecules (except water) are flexible (i.e. bond bending

and torsion are taken into account). The trial moves are randomly selected with the follow-

ing probabilities: 25% translations, 25% rotations, 1% volume changes, 25% λ changes, 16%

Gibbs Ensemble swap/identity changes and, 8% Reaction Ensemble swap/identity changes

for the case where molecules are treated as rigid. When flexibility of the molecules is taken

into account, the trial moves are selected with the following probabilities: 20% translations,

20% rotations, 14% bond bendings, 7% torsions, 1% volume changes, 20% λ changes, 12%

Gibbs Ensemble swap/identity changes and, 6% Reaction Ensemble swap/identity changes.

The Gibbs Ensemble swap and identity change trial moves facilitate the particle transfer

between the two simulation boxes.7 The Reaction Ensemble swap and identity change trial

S44



moves facilitate the conversion of reactants into products (and vice versa) in each simulation

box.8 In the first 105 cycles, the Wang-Landau scheme was used to obtain weight functions

for the fractional molecules. Then, every 105 cycles an iterative scheme was used to improve

the weight function further. After equilibrating, 105 production cycles were performed to

obtain average properties of the system such as the equilibrium composition. Additional

simulations were run in the NPT ensemble at this equilibrium composition to obtain the

chemical potentials using probe molecules of the four species involved in the reaction.

The thermodynamic activities are defined as:32

ai = exp

[
µi − µref

i

RT

]
= γixi (S70)

where ai is the thermodynamic activity of component i, µi is the chemical potential, µref
i is

the reference chemical potential, γi is the activity coefficient, and xi is the mole fraction.

The reference chemical potentials µref
i are defined as the chemical potentials of the pure

components at the same temperature and pressure. Additional simulations were performed

in the NPT ensemble to obtain the reference chemical potentials. All computed reference

chemical potentials can be found in Table S1.

Tables S1, S2, S3, S4 and S5 list the input that was used for simulations of the esterifi-

cation of methanol with acetic acid and calculations of chemical potentials.
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Table S2: Force field parameters of methanol,36 acetic acid,37 methyl acetate,35 and water.38
CH3 is described as united atom and M is a dummy site.

Molecule Atom/site ε/kB/[K] σ/[Å] q/[e]

CH3OH
CH3 98.0 3.75 0.265
O 93.0 3.02 -0.700
H 0 0 0.435

CH3COOH

CH3 98.0 3.75 0.120
C 41.0 3.90 0.420

O(=C) 79.0 3.05 -0.450
O(-H) 93.0 3.02 -0.460
H 0 0 0.370

CH3COOCH3

CH3(-C) 98.0 3.75 0.050
C 41.0 3.90 0.550

O(=C) 79.0 3.05 -0.450
O 55.0 2.80 -0.400

CH3(-O) 98.0 3.75 0.050

H2O
H 0 0 0.52422
O 81.899 3.16435 0
M 0 0 -1.04844

Table S3: Bond lengths in methanol,36 acetic acid,37 methyl acetate,35 and water.38,39

Molecule Bond Length/[Å]

CH3OH CH3-O 1.43
O-H 0.945

CH3COOH

CH3-C 1.520
C=O 1.214
C-O 1.364
O-H 0.970

CH3COOCH3

CH3-C 1.520
C=O 1.2
C-O 1.344

O-CH3 1.41

H2O
O-H 0.9572
O-M 0.15
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Table S4: Force field parameters for bond bendings in methanol,36 acetic acid,37 methyl
acetate,35 and water.38,39 Bond bending is described by the potential: Ubending = kθ

2
(θ − θ0)2.

Molecule Bending kθ/kB/[K] θ0

CH3OH CH3-O-H 55400 108.5◦

CH3COOH

CH3-C=O 40300 126◦
CH3-C-O 35300 111◦
O=C-O 40300 123◦
C-O-H 17600 107◦

CH3COOCH3

CH3-C=O 62500 125◦
CH3-C-O 70600 110◦
O=C-O 62500 125◦
C-O-CH3 62500 115◦

H2O
H-O-H Rigid 104.52◦
H-O-M Rigid 52.26◦

Table S5: Force field parameters for torsions in acetic acid,37 and methyl acetate.35 Torsion
is described by the potential: Utorsion =

∑3
i=0 ci cosi(φ).

Molecule Torsion c0/kB/[K] c1/kB/[K] c2/kB/[K] c3/kB/[K]

CH3COOH
O=C-O-H 2192.4 -630.0 -1562.4 0

CH3-C-O-H 2192.4 630.0 -1562.4 0

CH3COOCH3
O=C-O-CH3 10874.6 -2654.2 -4118.0 613.6

CH3-C-O-CH3 6551.3 1566.1 -4196.0 789.2

Table S6: Sum of chemical potentials of reactants (CH3OH + CH3COOH) and products
(CH3COOCH3 + H2O) at reaction and phase equilibrium of the esterification of methanol
with acetic acid at T = 343 K and P = 1 bar. Results for a system where all molecules are
rigid and a system where molecule are flexible (i.e. bond bending and torsion are taken into
account). The number between brackets indicate the undertainty (one standard deviation)
in the last digit.

Phase
∑

Reactants

νiµi/[kJ ·mol−1]
∑

Products

νiµi/[kJ ·mol−1]

Rigid water-rich -544(2) -544(2)
ester-rich -545(2) -544(2)

Flexible water-rich -545(2) -545(2)
ester-rich -546(2) -545(2)

S48



Appendix

In this Appendix we explain how to obtain the partition functions of isolated molecules.

These partition functions are required as input for simulations in Brick using the Reaction

Ensemble.

Partition Functions of Isolated Molecules

Molecular partition functions are used to calculate thermochemical properties such as the

internal energy, entropy, chemical potential, heat capacity, etc.40,41 These quantities can be

obtained from different sources including available thermochemistry data or quantum cal-

culations, each with a well-defined choice of reference state for zero of energy. The main

purpose of this section is to explain how reference states for energy calculations can be

chosen consistently using different data sets or computer programs. It is assumed that the

reader is partially familiar with statistical mechanics and basic concepts in computational

chemistry, and this section should not be blindly used as a "cook book" for computation

chemistry problems. The theoretical part in this section is based on the Physical Chemistry

book by McQuarrie40 and Essential Statistical Thermodynamics from Computational Chem-

istry Comparison and Benchmark Data Base (CCCBDB).42 In this section, commonly used

thermodynamic data sets (JANAF tables43,44) and the Gaussian09 software41 are used to

provide examples on how to calculate molecular partition functions for nitrogen, hydrogen

and ammonia. The results are used to solve the chemical equilibrium in MC simulations

of the Haber-Bosch process in the Reaction Ensemble.6 To compute the molecular parti-

tion function, a complete set of molecular energy levels is required, which is almost never

available.42,45 As an approximation, the energy of a molecule can be estimated by decoupling

translational, vibrational, rotational and electronic contributions, which means that different

energy contributions are unaffected by each other. Using this approximation, the molecular
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partition function of an isolated molecule can be written as40

q∗ (T ) = qtrans(T )qrot(T )qvib(T )qelec(T ) (S71)

in which the terms on the right hand side of Eq. S71 denote translational, rotational,

vibrational and electronic partition functions. Here, it is explained briefly how different con-

tributions in Eq. S71 are calculated to obtain q∗(T ).

Translational Partition Function: the translational contribution is obtained from40

qtrans(T ) =
V0

Λ3
Λ =

h√
2πMkBT

(S72)

in which Λ is the thermal de Broglie wavelength of the molecule, V0 is a reference volume,

kB is the Boltzmann constant, h is the plank constant, T is the temperature, and M is the

sum of all atomic masses in the molecule. The choice of reference volume in Eq. S72 may

be defined differently depending on the software. In Gaussian09,41 the ideal gas law is used

to calculate the volume at atmospheric pressure and the translational partition function is

defined as:41

qGaussian
trans (T ) =

kBT

PΛ3
(S73)

It is shown later in this section that only the temperature dependent part of the partition

function is used to obtain the chemical potential. Therefore, the choice of volume V0 in Eq.

S72 does not affect the chemical potential. For Brick, we take the convention V0 = 1 Å3.

From here on, we take the convention to explicitly write out the translational part of the
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partition function in Eq. S71:

q∗ (T ) = qtrans(T )qrot(T )qvib(T )qelec(T ) =
q(T )V0

Λ3
(S74)

where q(T ) = qrot(T )qvib(T )qelec(T ) (S75)

in which we use the reference volume V0 = 1 Å3 in Eq. S72, and q(T ) is the partition func-

tion excluding the translational part.

Electronic Partition Function: For a monotonic ideal gas, the electronic partition func-

tion is obtained using

qelec(T ) =
∑
i

gei exp[−βεei] (S76)

in which gei and εei are the degeneracy and the energy of the ith electronic level, respectively.

The degeneracy of electronic levels is determined by the spin multiplicity,41 2S+ 1, in which

S = is the net electron spin or total spin quantum number.42 For a monoatomic ideal gas,

the zero of electronic energy is fixed at the ground state (εe0 = 0). Normally, only the

first and the second term in the summation in Eq. S76 are considered for the electronic

contribution to the partition function.40 This is because the excited electronic energy levels

at typical temperatures are around tens of thousands of wave numbers,40 which means that

the excited energy levels for most substances are nearly inaccessible even at temperatures

up to T = 1000 K. As an illustrative example, hydrogen atom has a first excited state

2P1/2 with the energy 82258 in units of cm−1.40 At T = 1000 K, the contribution of the

second term in Eq. S76 is in order of 10−52. When considering excited electronic states,

the translation, vibrational and rotational contirbutions can be approximated as those in

the electronic ground state if no other data is available.45 For diatomic or polyatomic ideal

gas, the arbitrary zero of electronic energy is taken to be the infinitely dissociated atoms at

rest in their ground electronic state.40 The ground electronic level for a diatomic ideal gas
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Figure S19: Electronic potential curve of a diatomic molecule as a function of internuclear
distance R. −De is the energy of the molecule in the ground state (lowest value), relative
to infinitely dissociated atoms. The vibrational energy of the ground state (υ = 0) is called
zero-point energy which equals hν/2 . −D0 is the corresponding dissociation (atomization)
energy when the zero-point energy is selected as zero of energy.

is shown Eq. S19. It is shown in Eq. S19 that the energy difference between the minimum

of the internuclear potential well fully dissociated limit (bare nuclei and free electrons) is

denoted with De, which is the dissociation energy of the molecule. The energy of the ground

electronic state is εe1 = −De. Note the same definition of the molecular ground state holds

for a polyatomic molecule. The electronic partition function for a diatomic or polyatomic

ideal gas molecule is

qelec(T ) = ge1 exp[βDe] + · · · (S77)

in which the contributions from exited electronic levels are not considered at ordinary tem-

peratures. It should be noted that in Gaussian09, the electronic contribution only contains

the degeneracy of the electronic ground state,41 which means

qelec(T ) = ge1 (S78)
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The distinction between equations S77 and S78 is very important when obtaining the molecu-

lar partition function from Gaussian09, as the energy reference for the electronic contribution

is different by De.

Vibrational partition function: Under the harmonic-oscillator approximation, the acces-

sible vibrational energy levels of a diatomic molecule, relative to the bottom of the internu-

clear potential well, as shown in Fig. S19 are obtained from40

ευ = (υ + 1/2 )hν υ = 0, 1, 2, · · · (S79)

in which ν = (k/µ1/2 )/2π is the frequency of vibration. k is the force constant of the

molecule, υ is the quantum number and µ is the reduced mass. A zero of energy is also

required for the vibrational energy levels. Two choices are common for zero of vibrational

energy: (1) the minimum of the internuclear potential energy curve as shown in Fig. S19,

which means ε0 = hν/2 . (2) The energy of the ground vibrational state is set to zero, which

means ε0 = 0. As shown in Fig. S19, the corresponding dissociation energy isD0 = De−hν/2

which means that the zero-point energy is taken to be the ground vibrational state. For a

polyatomic molecule, the vibrational motion is described using an independent harmonic

oscillator, in terms of normal coordinates. The vibrational energies are written as

ευ =
α∑
j=1

(υj + 1/2 )hνj υj = 0, 1, 2, · · · (S80)

in which j denotes the jth normal mode, and α is the vibrational degree of freedom. For a

linear molecule with n atoms, α = 3n − 5, and a nonlinear molecule, α = 3n − 6. Similar

to a diatomic molecule. Considering the first choice for the zero of vibrational energy, the
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vibrational partition function of a diatomic molecule equals:40

qBOT
vib (T ) =

α∏
j=1

exp [−Θvib,j/2T ]

1− exp [−Θvib,j/T ]
(S81)

in which Θj = hνj/kB is the characteristic vibrational temperature corresponding to the

jth normal mode. The notation "BOT" refers to the zero of energy at the bottom of the

internuclear potential well (−De). This notation is used in Gaussian09 to report the vibra-

tional partition function using Eq. S81. The exponential term in the nominator on the right

hand side of Eq. S81, is the contribution of the ground vibrational state.40 Note that the

vibrational energy levels are non-degenerate. Considering the ground vibrational state as

zero of vibrational energy, the vibrational partition function is obtained using41

qV=0
vib (T ) =

α∏
j=1

1

1− exp [−Θvib,j/T ]
(S82)

The notation "V=0" refers to the vibrational ground state is taken to be the arbitrary zero-

point energy. This notation is also used in Gaussian09 to report the vibrational partition

function using Eq. S82. When the vibrational ground state is taken to be zero of energy,

the corresponding dissociation energy, for a general case of a polyatomic molecule relative

to the is obtained from, see Fig. S19:

D0 = De −
α∑
j=1

hνj/2 (S83)

The second term on the right hand side of Eq. S83 is the zero-point vibrational energy at

zero Kelvin, usually abbreviated as ZPE or ZPVE.41,42 Normally, empirical scaling factors

are used to scale the vibrational frequencies obtained from ab inito calculations to correct

for vibrational anharmonicity and incomplete electron correlations.42,46 The empirical scal-

ing factors are found in literature and reference data bases42,46.
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Rotational partition function: Under the rigid-rotator approximation, the rotational

energy levels of a diatomic molecule are written as40

εJ =
~2J(J + 1)

2I
J = 0, 1, 2, · · · (S84)

in which I is the moment of inertia of the rotor. The degeneracy of each rotational level

equals gJ = 2J + 1. As shown in Eq. S84, rotation of a rigid molecule is quantized and

only certain rotational energy levels can be occupied.45 Based on Eq. S84, a convenient

choice for the zero of rotational energy is the level J = 0. The energies and degeneracies of

a linear polyatomic molecule are the same as a diatomic molecule.40 The expression for the

rotational partition function of a linear polyatomic molecule or a diatomic molecule is40

qrot(T ) =
T

σΘrot
(S85)

in which Θrot = h2/8π2IkB is the characteristic rotational temperature, and σ is the sym-

metry number or rotational symmetry number of the molecule. The symmetry number is

the number of unique orientations of the rigid molecule obtained by interchanging identi-

cal atoms.40–42,45 For a heteronuclear diatomic or unsymmetrical molecule, σ = 1, and for

a homonuclear diatomic or symmetrical molecule σ = 2. The rotational symmetry num-

ber can be identified using group theory if the point group of the molecule is known. The

symmetry number corresponding to different point groups is provided in Table S7.42 As a

reference, a list of molecules and corresponding symmetry numbers is found on the web-

site of CCCBDB.42 It is also possible to obtain σ from counting manually the number of

unique orientations of molecule. It is highly recommended to double-check the point group

of the molecule from Gaussian09 output. For non-linear, polyatomic molecules, the partition
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Table S7: Point groups and the corresponding symmetry number. The values in this table
are obtained from the Computational Chemistry Comparison and Benchmark DataBase
(CCCBDB) website.42

Group σ
C1, Ci, Cs, C∞ν 1
Cn, Cnν , Cnh n
D∞h 2
Dn, Dnh, Dnd 2n
T, Td 12
Sn n/2
Oh 24
Ih 60

function is obtained from40

qrot(T ) =
π1/2

σ

(
T 3

Θrot,AΘrot,BΘrot,C

)1/2

(S86)

in which Θrot,j is the characteristic rotational temperature corresponding to the three prin-

cipal moments of inertia; A,B,C.40 If Θrot,A = Θrot,B = Θrot,C the molecule is a symmetric

top, and if Θrot,A 6= Θrot,B 6= Θrot,C the molecule is a asymmetric top. The molecule is called

symmetric top if Θrot,A = Θrot,B 6= Θrot,C.40

Molecular partition function: Combining equations S71, S72, S77, S81, and S86, the

molecular partition function for a polyatomic ideal gas equals

q (T ) =
π1/2

σ

(
T 3

Θrot,AΘrot,BΘrot,C

)1/2 α∏
j=1

exp [−Θvib,j/2T ]

1− exp [−Θvib,j/T ]
· ge1 exp[De/kBT ] (S87)

in which the zero-point energy for the vibrational ground state is the bottom of the internu-

clear potential well, and the zero of electronic energy is the dissociated atoms in the ground

state. This means that the ground state electronic energy equals −De as shown in Fig. S19.

In the thermochemistry output of Gaussian09, the energy of the electronic ground state is

taken to be zero, and the corresponding partition function denoted by "Q Total Bot" is the
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same as Eq. S87 except for the factor of exp[βDe].41 It is important to consider this factor

when evaluating equilibrium constant of reaction from molecular partition functions. This

will be highlighted later in this section. The molecular partition function (excluding the

translational part) is also obtained by combining equations S71, S72, S77, S81, S83, and

S86.

q (T ) =
π1/2

σ

(
T 3

Θrot,AΘrot,BΘrot,C

)1/2 α∏
j=1

1

1− exp [−Θvib,j/T ]
· ge1 exp[D0/kBT ] (S88)

in which the zero-point for the vibrational energy is the ground state energy, and the corre-

sponding the ground state electronic energy is −D0 as shown in Fig. S19. Based on equations

S81, S82, and S83, one can observe that equations S87 and S88 are identical. In thermody-

namic tables, it is however common to take the ground state of molecule (vibrational and

electronic) as zero of energy, instead of the dissociated atoms. This is performed by factoring

out the contribution of the ground state energy of the molecule from the partition function

excluding the translational part:

q (T ) =
∑
j

exp [−εj/kBT ]

= exp [−ε0/kBT ]
∑
j

exp [−(εj − ε0)/kBT ]

= exp [−ε0/kBT ] q0 (T )

(S89)

The notation q0(T ) for the molecular partition functions highlights the fact that the ground

state energy of the molecule is zero (instead of −D0). By comparing equations S89 and S88,

it is clear that ε0 = −D0. For a general case of a polyatomic molecule, we have

q0 (T ) =
π1/2

σ

(
T 3

Θrot,AΘrot,BΘrot,C

)1/2 α∏
j=1

1

1− exp [−Θvib,j/T ]
· ge1 (S90)

In the thermochemistry output of Gaussian09, the value reported as "Q Total V=0"41 is
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equal to kBT
PΛ3 q0 (T ).

Atomization energy (D0) : The experimental values for the atomization energy of several

molecules are reported in the NIST database42 and other thermodynamic references.40 The

atomization energy can also be obtained using ab inito calculation of molecular energies.

As shown in Fig. S19, for a diatomic molecule, D0 is obtained from the difference between

the molecular energy (vibrational and electronic) in the ground state and the dissociated

atoms in their respective ground state. The same approach holds for a polyatomic molecule.

Using the notation as in the Gaussian09 manual,41 the atomization energy of a polyatomic

molecule is obtained from

D0 =
N∑
i=1

yi(εe,i)− (εe + εZPE) (S91)

in which yi indicates the number of atoms of kind i in the molecule. εe,i is the electronic

energy of the ith atom (dissociated). The second term on the right hand side is the sum

of electronic and ZPE of the molecule (vibrational energy in the ground state). It should

be noted that computing the atomization energy to chemical accuracy (usually defined as

1 kcal/mol) is not trivial. Advanced methods (e.g. Gaussian-n composite methods47,48 are

recommended for accurate calculation of atomization energies. This is beyond the scope

of this thesis. From JANAF tables, the atomization energy is obtained from the difference

between the enthalpy of formation of the molecule and the dissociated atoms:

D0 =
N∑
i=1

yi∆fH
◦
i (0 K)−∆fH

◦(0 K) (S92)

in which ∆fH
◦
i (0 K) is the enthalpy of formation of the ith atom (dissociated) and ∆fH

◦(0 K)

is the enthalpy of formation of the molecule.
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Chemical Potentials

It is shown that the standard chemical potential and the molecular partition function are

related:40

µ◦(T ) = −RT ln

[
q (T ) kBT

PΛ3

]
(S93)

µ◦(T ) is the standard chemical potential of an ideal gas molecule and q (T ) is the partition

function (excluding the translational part) from Eq. S87 or Eq. S88. To tabulate the

chemical potential in Eq. S93, a zero of energy is required. In thermodynamic tables, it is

common to take the ground state energy of the molecule to be zero. This leads to

µ◦(T )− E0 = −RT ln

[
q0 (T ) kBT

PΛ3

]
(S94)

in which E0 = −D0 = NAε0 (NA being Avogadro’s number) and q0 (T ) is the partition

function with the ground state energy equal to zero (Eq. S89). With this energy reference,

we show that the E0 is the standard molar enthalpy of molecule at T = 0 K. For an ideal

gas, the enthalpy can be written in terms of partition function:

H◦(T ) = U +RT

= RT 2∂ ln q(T )

∂T
+RT

= NAε0 +RT 2∂ ln q0(T )

∂T
+RT

(S95)

Evaluating the enthalpy in Eq. S95 at T = 0 shows that H◦(0 K) = E0 = NAε0. The ideal

gas partition function excluding the translational part q0(T ) in Eq. S95 is the same as in

Eq. S90 which can be obtained by rearranging Eq. S93 or Eq. S94. q0(T ) can be obtained

using rigid rotator-harmonic oscillator approximation which agrees reasonably well with

experiments.40 To improve the accuracy, experimental data may be used to complement the

theoretical calculations.40 The combination of experimentally determined thermodynamic
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Table S8: An example of a JANAF table entry.43,44 In the JANAF tables, the standard
Gibbs energy (chemical potential) is referenced to the enthalpy at Tr = 298.15 K. To obtain
the chemical potential of a molecule in which the ground state energy is taken to be zero,
the values for the Gibbs energy are shifted relative to the enthalpy at Tr = 0 K, as described
in Eq. S96

.
Nitrogen Oxide (NO2) N1O2 (g)

J.K-1.mol-1 kJ.mol-1

T /K C◦
P S◦ −[G◦ − H◦(Tr)]/T H − H◦(Tr) ∆fH

◦ ∆fG
◦ log Kf

0 0 0 INFINITE -10.186 35.927 35.927 INFINITE
100 33.276 202.563 271.168 -6.861 34.898 39.963 -20.874
200 34.385 225.852 243.325 -3.495 33.897 45.422 -11.863
250 35.593 233.649 240.634 -1.746 33.46 48.355 -10.103
298.15 36.974 240.034 240.034 0 33.095 51.258 -8.98

properties and theoretical calculations can be found in the Joint, Army, Navy Air Force

(JANAF) tables.43,44 Thermodynamic functions and parameters including the Gibbs free

energy, enthalpy and heat capacity are extensively tabulated in JANAF tables.43,44 A JANAF

table entry for NO2 is provided as an example in Fig. S8. Using JANAF tables, it is possible

to calculate q0(T ) in Eq. S94 without performing direct quantum mechanical calculations.

For a pure component, we have µ◦ = G◦. For a pure substance, µ◦(T ) − E◦0 in Eq. S94 is

obtained from JANAF tables (denoted with G◦(T )−H◦0 ). To obtain the chemical potential

of a molecule in which the ground state energy is taken to be zero (see Eq. S94), the values

for the Gibbs energy are shifted relative to the enthalpy at Tr = 0 K. By rearranging the

data in the fourth and fifth columns and multiplying by the temperature (see Table S8) we

obtain the chemical potential as shown in Eq. S94:

µ◦(T )− E0 = −RT ln

[
q0 (T ) kBT

PΛ3

]
= G◦(T )−H◦(0 K)

= [G◦(T )−H◦(298.15 K)]− [H◦(0 K)−H◦(298.15 K)]

(S96)

For obtaining the E0 = −D0 the reader is refered to the section about the atomization

energy.
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Chemical Equilibrium

For a general case of homogeneous gas phase chemical reaction, it is well-known that the

Gibbs energy of reaction and the equilibrium constant are related to chemical potentials of

reactants and products (at P ◦). For a multicomponent reacting mixture of S distinguishable

components we have40,49

∆G
◦

r (T ) =
S∑
i=1

νiµ
◦

i (T )

= −RT lnK(T )

= −RT ln

[
S∏
i=1

(
q(T )V0

Λ3

)]νi

= −RT
S∑
i=1

νi ln

[(
q(T )V0

Λ3

)]
(S97)

νi is the stoichiometric coefficient of component i, and K(T ) is the equilibrium constant of

the reaction.40 The reaction enthalpy at standard pressure is calculated directly from the

Gibbs-Helmholtz equation50,51

(
∂∆G◦r/T

∂T

)
P

= −∆H◦r
T 2

(S98)

Ammonia Synthesis Reaction

The ideal gas partition functions are calculated for nitrogen, hydrogen, and ammonia us-

ing experimental thermochemistry data,40 JANAF tables44 and quantum calculations using

Gaussian09.41 The frequency analysis is performed using two different basis sets: B3LYP

level of theory with a 6-31G** basis set, and MP2 level of theory with a 6-311G** basis

set.41 It should be noted that other software packages are also available for performing fre-

quency analysis, such as ADF,52 Spartan53 etc. For details about Gaussian09 input files,

the reader is referred to the manual.41 The characteristic vibrational and rotational temper-
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atures of nitrogen, hydrogen, and ammonia obtained from experimental data and ab intio

calculations are provided in Table S9. For atomization energies of components, only the

experimental data provided by McQuarrie40 are used and not the ones obtained from Gaus-

sian09.41 Atomization energies can also be obtained from JANAF tables using Eq. S92. The

results are shown in Table S10. One can easily see that computation of the atomization

energies using a single basis set results in energy differences well above chemical accuracy.54

Advanced methods such as (e.g. Gaussian-n composite methods47,48 are recommended for

ab initio calculation of atomization energies which is beyond the scope of this thesis. The

thermochemical data in Tables S9 and S10 are used to compute the partition functions of

nitrogen, hydrogen and ammonia at temperatures between T = 573 K and T = 873 K. The

results are presented in Table S11. Note that the corresponding vibrational and rotational

partition functions for diatomic molecules were used for hydrogen and nitrogen, and for

ammonia the corresponding vibrational and rotational partition functions were used.

Partition Functions from thermochemistry as input for Brick

To calculate molecular partition functions (for example from Gaussian0941) and use them

as input for simulations in Brick one can go through the following steps to calculate the

different contributions:

1. qtrans, the translational partition function. This term can be directly calculated from

the thermal wavelength:

Λ =
h√

2πMkBT
(S99)

qtrans =
V0

Λ3
with V0 = 1 Å3. (S100)

M is the mass of one molecule (in kg) and the thermal wavelength in Å.

2. qelec, the electronic partition function where typically only the first electronic level is
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considered (the last factor on the right-hand side in Eq. S88):

qelec = ge1 exp

[
D0

kBT

]
(S101)

where the degeneracy ge1, and dissociation energy D0 can also be obtained from liter-

ature. The partition function qelec can also be directly obtained from Gaussian09.

3. qvib, the vibrational partition function. This term can be obtained directly from Gaus-

sian09 or computed manually:

qvib =
α∏
j=1

1

1− exp [−Θvib,j/T ]
(S82)

where the vibrational temperatures Θvib,j can be obtained from literature.42

4. qrot, the rotational partition function. This term can be obtained directly from Gaus-

sian09 or computed manually:

qrot =
π1/2

σ

(
T 3

Θrot,AΘrot,BΘrot,C

)1/2

(S86)

where the symmetry number σ (Table S7) and rotational temperatures Θrot,A/B/C can

be obtained from literature.42

5. Multiply all terms to obtain the molecular partition function (Eq. S71):

q∗ = qtransqrotqvibqelec =
qrotqvibqelecV0

Λ3
=
qV0

Λ3
(S71)

with V0 = 1 Å3.

6. Since typical numbers for qV0
Λ3 are large, in Brick the natural logarithm is used as input:

Input for Brick: ln

(
qV0

Λ3

)
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Example

We calculate the partition function of NH3 at T = 573 K following the steps above as an

example.

1. M = 2.828 · 10−26 kg so that Λ = 0.1767 Å and qtrans = 181.2.

2. D0 = 1158 kJ/mol and the degeneracy ge1=1 so that gelec = 3.641 · 10105.

3. The vibrational temperatures are 1360 K, 4800 K, 2330 K, 2330 K, 4880 K, and 4880K

so that qvib = 1.142.

4. The rotational temperatures are 13.60 K, 13.60 K, and 8.92 K (McQuarrie et al.40 as

reported in Table S9) and the symmetry number is 3, so that qrot = 199.5.

5. Multiplying all terms yields: qV0
Λ3 = 1.503 · 10110.

6. Taking the logarithm of this number is the input that can be used in Brick:

Input for Brick: ln

(
qV0

Λ3

)
= 253.7

Partition Functions from JANAF tables as input for Brick

To calculate molecular partition functions, using JANAF tables, and use them as input for

simulations in Brick one can go through the following steps:

1. Calculate the chemical potential:

µ◦(T )− E0 = [G◦(T )−H◦(298.15 K)]− [H◦(0 K)−H◦(298.15 K)] (S96)

using the JANAF tables.
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2. Calculate the partition function excluding the contribution from the atomization energy

(S90):

q0

Λ3
=

P

kBT
exp

[
−µ

◦(T )− E0

RT

]
(S102)

where P is the reference pressure (typically P = 1 atm).

3. Multiply the result by the contribution from the atomization energy:

q

Λ3
=
q0

Λ3
exp

[
D0

RT

]
(S103)

where the dissociation energy D0 can be obtained from literature.42,44

4. Multiply the result by the reference volume used in Brick V0 = 1 Å3 and take the

natural logarithm of the result:

Input for Brick: ln

(
qV0

Λ3

)

Example (JANAF)

We calculate the partition function of NO2 at T = 298.15 K following the steps above as an

example from the JANAF tables (Table S8).

1. From Table S8 we calculate

µ◦(T )− E0 = [G◦(298.15)−H◦(298.15 K)]− [H◦(0 K)−H◦(298.15 K)] (S104)

= −6.134 · 104 J/mol (S105)

Be aware of the different units used in the JANAF tables for different columns.

2. In JANAF P = 1.013 · 105 Pa which yields: q0
Λ3 = 4.407 · 10−16 Å-3.
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3. The dissociation energy D0 = 927.7 kJ/mol.42 This yields: q
Λ3 = 1.480 · 10147 m−3.

4. Multiplying the result by the reference volume, V0 = 1 Å3 and taking the logarithm of

this number is the input that can be used in Brick:

Input for Brick: ln

(
qV0

Λ3

)
= 338.8
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Table S9: Characteristic vibrational and rotational temperatures of nitrogen, hydrogen and
ammonia obtained from experimental data (McQuarrie et al.40) and ab initio calculations
using Gaussian09.41 In the table, Gaussian (1) denotes frequency calculations using B3LYP
level of theory with a 6-31G** basis set, and Gaussian (2) denotes frequency calculations
using MP2 level of theory with a 311G**basis set. To correct for vibrational anharmonicity,
the vibrational frequencies obtained from Gaussian09 are scaled by empirical factors, 0.96
for the B3LYP/6-31G** and 0.95.42,46 The numbers in parentheses indicate the degeneracy
of the modes.

McQuarrie Gaussian (1) Gaussian (2)

Θvib/[K] Θrot/[K] Θvib/[K] Θrot/[K] Θvib/[K] Θrot/[K]
N2 3374 2.88 3393 2.83 2979 2.76
H2 6332 85.2 6161 87.16 6196 88.29

NH3

1360 13.60 1509 14.10 1542 14.24
4800 13.60 4781 14.10 4819 14.24
2330(2) 8.92 2340(2) 9.14 2292(2) 9.18
4880(2) 4958(2) 5015(2)

Table S10: Experimental atomization energies (McQuarrie et al.40) and atomization energies
computed for nitrogen, hydrogen, ammonia using Gaussian09 using the B3LYP level of
theory with a 6-31G** basis set.41

Component D0 / [kJ/mol]
McQuarrie Gaussian

N2 941.6 917.6
H2 432.1 432.1
NH3 1158 1149.8
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Table S11: Computed ideal gas partition functions of nitrogen, hydrogen, ammonia obtained
as defined in this. The reported values are based on experimental data (McQuarrie40 and
JANAF tables44) and quantum computations using Gaussian09.41 In the table, Gaussian (1)
denotes frequency calculations using B3LYP level of theory with a 6-31G** basis set, and
Gaussian (2) denotes frequency calculations using MP2 level of theory with a 311G** basis
set. It is important to note that for the values obtained from Gaussian09, the experimental
atomization energies provided by McQuarrie40 are used (see Table S10). One can easily see
that using the atomization energies from Gaussian09, listed in Table S10, results in large
deviations.

q/Λ3 [N2]/[Å−3] q/Λ3 [H2]/[Å−3] q/Λ3 [NH3]/[Å−3]

T/[K] Gaussian (1) Gaussian (2) Gaussian (1) Gaussian(2) Gaussian (1) Gaussian (2)

573 2.65 · 1090 2.72 · 1090 5.94 · 1040 5.87 · 1040 1.40 · 10110 1.38 · 10110

673 7.00 · 1077 7.22 · 1077 1.25 · 1035 1.23 · 1035 5.01 · 1094 4.94 · 1094

773 3.50 · 1068 3.62 · 1068 8.09 · 1030 7.99 · 1030 1.94 · 1083 1.92 · 1083

873 2.46 · 1061 2.56 · 1061 4.96 · 1027 4.90 · 1027 3.33 · 1074 3.29 · 1074

T/[K] McQuarrie JANAF McQuarrie JANAF McQuarrie JANAF

573 2.60 · 1090 2.67 · 1090 6.08 · 1040 6.53 · 1040 1.50 · 10110 1.46 · 10110

673 6.89 · 1077 7.04 · 1077 1.27 · 1035 1.36 · 1035 5.42 · 1094 5.26 · 1094

773 3.44 · 1068 3.52 · 1068 8.27 · 1030 8.79 · 1030 2.12 · 1083 2.06 · 1083

873 2.42 · 1061 2.48 · 1061 5.07 · 1027 5.38 · 1027 3.65 · 1074 3.58 · 1074
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