Supporting information for "Computing solubility parameters of Deep Eutectic Solvents from Molecular Dynamics simulations"

Hirad S. Salehi^a, Mahinder Ramdin^a, Othonas A. Moultos^a, Thijs J.H. Vlugt^{a,*}

^aEngineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands

In this document, force field parameters used in our MD simulations of deep eutectic solvents (DESs) are presented. Five DESs were used in the simulations: choline chloride urea (ChClU), choline chloride glycerol (ChClG), choline chloride ethylene glycol (ChClEg), choline chloride malonic acid (ChClMa), and choline chloride oxalic acid (ChClOa). For all DESs, the parameters obtained by Doherty and Acevedo [1], based on the OPLS force field [2], were used. Additionally, the Generalized Amber Force Field (GAFF) [3] parameters by Perkins et al. [4] were used for ChClU to investigate the influence of force field on the calculations of solubility parameters and enthalpies of vaporization. Both force fields are non-polarizable and consist of bonded and non-bonded (Lennard-Jones and electrostatic) terms and model the DESs as all-atom, flexible molecules. Molecular structure and atom labels are shown in Figures S1 to S6.

Preprint submitted to Fluid Phase Equilibria

^{*}Corresponding author

Email address: t.j.h.vlugt@tudelft.nl (Thijs J.H. Vlugt)

 $\label{eq:Figure S1: Choline structure and atom labels.}$

Figure S2: Urea structure and atom labels.

Figure S3: Glycerol structure and atom labels.

Figure S4: Etyhlene glycol structure and atom labels.

Figure S5: Malonic acid structure and atom labels.

Figure S6: Oxalic acid structure and atom labels.

1. GAFF Force Field Parameters for Choline Chloride

atom	atom type	partial charge	$\epsilon/(\text{kcal.mol}^{-1})$	$\sigma/(\text{\AA})$
C1	CW	0.12008	0.1094	3.3997
C2	CS	-0.02576	0.1094	3.3997
C3 - C5	C3	-0.10736	0.1094	3.3997
$\mathrm{H1},\mathrm{H2}$	H1	0.04080	0.0157	2.4714
H3	НО	0.36360	0.0010	0.1000
H4, H5	HX	0.08928	0.0157	1.9600
H6 - H14	HX	0.09544	0.0157	1.9600
Ν	N4	0.04016	0.1700	3.2500
Ο	OH	-0.49512	0.2104	3.0665
Cl	Cl	-0.80000	0.1000	4.4010

Table S1: GAFF atom types and non-bonded parameters for choline chloride [4].

bond type	$k_{\rm r}/({\rm kcal.mol^{-1}}.{\rm \AA^{-2}})$	$r_0/(\text{\AA})$
C3 - HX	338.7	1.09
C3 - N4	293.6	1.50
N4 - CS	293.6	1.50
$\mathrm{CS}-\mathrm{HX}$	338.7	1.09
$\mathrm{CS}-\mathrm{HX}$	303.1	1.54
$\rm CW-H1$	335.9	1.09
$\rm CW - OH$	314.1	1.43
OH – HO	369.6	0.97
CS - HX $CS - HX$ $CW - H1$ $CW - OH$ $OH - HO$	$338.7 \\ 303.1 \\ 335.9 \\ 314.1 \\ 369.6$	$ 1.09 \\ 1.54 \\ 1.09 \\ 1.43 \\ 0.97 $

Table S2: GAFF bond parameters for choline ion [4]. The bond energy is calculated as: $E_{\text{bond}}(r) = k_{\text{r}}(r - r_0)^2.$

angle type	$k_{\theta}/(\text{kcal.mol}^{-1}.\text{rad}^{-2})$	$ heta_0$
HX - C3 - HX	39.04	110.7
$\mathrm{HX}-\mathrm{C3}-\mathrm{N4}$	49.02	107.9
C3 - N4 - CS	62.84	110.6
N4 - CS - HX	49.02	107.9
N4 - CS - CW	64.45	114.3
$\mathrm{CS}-\mathrm{CW}-\mathrm{H1}$	46.36	110.1
$\mathrm{CS}-\mathrm{CW}-\mathrm{OH}$	67.72	109.4
$\mathrm{HX}-\mathrm{CS}-\mathrm{CW}$	46.02	111.7
H1 - CW - OH	50.97	109.9
$\rm CW-OH-HO$	47.09	108.2
C3 - N4 - C3	62.84	110.6
$\mathrm{HX}-\mathrm{C3}-\mathrm{HX}$	39.04	110.7
H1 - CW - H1	39.18	109.6

Table S3: GAFF angle parameters for choline ion [4]. The angle energy is calculated as: $E_{\text{angle}}(\theta) = k_{\theta}(\theta - \theta_0)^2.$

dihedral types	$\frac{V_n}{2}/(\text{kcal.mol}^{-1})$	n	γ
H1 - CW - OH - HO	0.167	3	0
CS - CW - OH - HO	0.160	-3	0
CS - CW - OH - HO	0.250	1	0
H1 - CW - CS - HX	0.156	3	0
H1 - CW - CS - N4	0.156	3	0
OH - CW - CS - HX	0.156	3	0
OH - CW - CS - N4	0.156	3	0
CW - CS - N4 - C3	0.156	3	0
$\mathrm{HX}-\mathrm{CS}-\mathrm{N4}-\mathrm{C3}$	0.156	3	0
CS - N4 - C3 - HX	0.156	3	0
C3 - N4 - C3 - HX	0.156	3	0

Table S4: GAFF dihedral parameters for choline ion [4]. The dihedral energy is calculated as: $E_{\text{dihedral}}(\phi) = \frac{V_n}{2} [1 + \cos(n\phi - \gamma)].$

2. GAFF Force Field Parameters for Urea

atom	atom type	partial charge	$\epsilon/(\text{kcal.mol}^{-1})$	$\sigma/(\text{\AA})$
С	С	1.0401	0.0860	3.3997
H1, H3	HZ	0.4167	0.0157	1.0691
H2, H4	HN	0.4167	0.0157	1.0691
N1, N2	Ν	-1.0246	0.1700	3.2500
Ο	Ο	-0.6577	0.2100	2.9599

Table S5: GAFF atom types and non-bonded parameters for urea [4].

bond type	$k_{\rm r}/({\rm kcal.mol^{-1}}.{\rm \AA^{-2}})$	$r_0/(\text{\AA})$
C - O	648.0	1.21
$\mathrm{C}-\mathrm{N}$	478.2	1.35
$\mathrm{N}-\mathrm{HN}$	410.2	1.01

 Table S6: GAFF bond parameters for urea [4].

$\begin{tabular}{c c c c c c c c c c c c c c c c c c c $	θ_0	$k_{\theta}/(\text{kcal.mol}^{-1}.\text{rad}^{-2})$	angle type
$\begin{array}{cccc} C - N - HN & 49.21 & 1 \\ C - N - HZ & 49.21 & 1 \\ HN - N - HZ & 39.73 & 1 \end{array}$	22.0	75.83	N - C - O
$\begin{array}{ccc} C - N - HZ & 49.21 & 1 \\ HN - N - HZ & 39.73 & 1 \end{array}$	18.5	49.21	$\mathrm{C}-\mathrm{N}-\mathrm{HN}$
HN - N - HZ 39.73 1	18.5	49.21	$\mathrm{C}-\mathrm{N}-\mathrm{HZ}$
	17.9	39.73	$\mathrm{HN}-\mathrm{N}-\mathrm{HZ}$
N - C - N 74.80 1	13.4	74.80	N - C - N

Table S7: GAFF angle parameters for urea [4].

Table S8: GAFF dihedral parameters for urea [4].

dihedral types	$\frac{V_n}{2}/(\text{kcal.mol}^{-1})$	n	γ
$\overline{HN - N - C - O}$	2.5	-2	180
HN - N - C - O	2.0	1	0
HZ - N - C - O	2.5	-2	180
HZ - N - C - O	2.0	1	0
$\rm N-C-N-HN$	2.5	2	180
$\mathrm{N}-\mathrm{C}-\mathrm{N}-\mathrm{HZ}$	2.5	2	180
N - N - C - O (improper)	10.5	2	180
C - HZ - N - HN (improper)	1.1	2	180

3. OPLS Force Field Parameters for Choline Chloride

atom	atom type	partial charge	$\epsilon/(\text{kcal.mol}^{-1})$	$\sigma/(\text{\AA})$
C1	CW	0.132	0.066	3.50
C2	CS	-0.131	0.066	3.50
C3 - C5	CA	-0.100	0.066	3.50
$\mathrm{H1},\mathrm{H2}$	HW	0.034	0.030	2.20
H3	ΗY	0.275	0.001	0.10
H4, H5	HS	0.068	0.030	2.60
H6 - H14	HA	0.033	0.030	2.50
Ν	NA	0.791	0.170	3.25
Ο	OY	-0.468	0.170	3.07
Cl	Cl	-0.800	0.148	3.77

Table S9: OPLS atom types and non-bonded parameters for choline chloride [1].

	0
$k_{\rm r}/({\rm kcal.mol^{-1}A^{-2}})$	$r_0/(A)$
340	1.0990
490	1.4980
490	1.5160
340	1.0805
317	1.5210
340	1.0850
450	1.3950
553	0.9490
	$k_{\rm r}/({\rm kcal.mol}^{-1}{\rm \AA}^{-2})$ 340 490 490 340 317 340 450 553

Table S10: OPLS bond parameters for choline ion [1]. The bond energy is calculated as: $E_{\text{bond}}(r) = k_{\text{r}}(r - r_0)^2.$

angle type	$k_{\theta}/(\text{kcal.mol}^{-1}.\text{rad}^{-2})$	$ heta_0$
HA - CA - HA	35.0	110.01
$\mathrm{HA} - \mathrm{CA} - \mathrm{NA}$	35.0	108.90
CA - NA - CS	51.8	110.20
$\rm NA-CS-HS$	35.0	106.40
$\rm NA-CS-CW$	70.0	116.60
$\mathrm{CS}-\mathrm{CW}-\mathrm{HW}$	35.0	108.30
$\mathrm{CS}-\mathrm{CW}-\mathrm{OY}$	80.0	109.60
$\mathrm{HS}-\mathrm{CS}-\mathrm{CW}$	35.0	109.30
HW - CW - OY	35.0	111.60
CW - OY - HY	35.0	110.90
CA - NA - CA	55.0	108.73
$\mathrm{HS}-\mathrm{CS}-\mathrm{HS}$	35.0	108.60
$\mathrm{HW}-\mathrm{CW}-\mathrm{HW}$	35.0	107.40

Table S11: OPLS angle parameters for choline ion [1]. The angle energy is calculated as: $E_{\text{angle}}(\theta) = k_{\theta}(\theta - \theta_0)^2.$

Table S12: OPLS dihedral parameters for choline ion [1]. The dihedral energy is calculated as: $E_{\text{dihedral}}(\phi) = \frac{1}{2}V_1[1 + \cos(\phi)] + \frac{1}{2}V_2[1 - \cos(2\phi)] + \frac{1}{2}V_3[1 + \cos(3\phi)].$

dihedral types	$V_1/(\text{kcal.mol}^{-1})$	$V_2/(\text{kcal.mol}^{-1})$	$V_3/(\text{kcal.mol}^{-1})$
$\overline{CW - CS - NA - CA}$	0.100	0.550	0.650
CA - NA - CA - HA	0.000	0.000	0.825
$\mathrm{CS}-\mathrm{NA}-\mathrm{CA}-\mathrm{HA}$	0.000	0.000	0.940
HS - CS - NA - CA	0.000	1.000	0.700
OY - CW - CS - NA	-6.000	-5.000	3.200
OY - CW - CS - HS	-0.500	-2.500	0.250
HW - CW - CS - NA	-6.000	-7.000	0.750
HW - CW - CS - HS	6.000	-3.000	2.000
HY - OY - CW - CS	-0.356	-0.174	0.350
HY - OY - CW - HW	-3.000	1.000	-2.000
CS - NA - CA - CA (improper)	0.000	2.000	0.000
CA - NA - CA - CA (improper)	0.000	2.000	0.000

4. OPLS Force Field Parameters for Urea

atom	atom type	partial charge	$\epsilon/(\text{kcal.mol}^{-1})$	$\sigma/(\text{\AA})$
С	С	0.124	0.1575	3.75
H1, H3	HC	0.276	0.0010	0.10
H2, H4	HT	0.276	0.0010	0.10
N1, N2	Ν	-0.453	0.2550	3.55
Ο	Ο	-0.322	0.3150	2.96

Table S13: OPLS atom types and non-bonded parameters for urea [1].

bond type	$k_{\rm r}/({\rm kcal.mol^{-1}}.{\rm \AA^{-2}})$	$r_0/(\text{\AA})$
O - C	570	1.229
N - C	490	1.335
$\mathrm{HT}-\mathrm{N}$	434	1.010
$\mathrm{HC}-\mathrm{N}$	434	1.010

Table S14: OPLS bond parameters for urea [1].

angle type	$k_{\theta}/(\text{kcal.mol}^{-1}.\text{rad}^{-2})$	θ_0
O - C - N	80	122.9
$\mathrm{C}-\mathrm{N}-\mathrm{HC}$	35	119.8
$\mathrm{C}-\mathrm{N}-\mathrm{HT}$	35	119.8
$\mathrm{N}-\mathrm{C}-\mathrm{N}$	70	114.2
$\mathrm{HC}-\mathrm{N}-\mathrm{HT}$	35	120.0

Table S15: OPLS angle parameters for urea [1].

dihedral types	$V_1/(\text{kcal.mol}^{-1})$	$V_2/(\text{kcal.mol}^{-1})$	$V_3/(\text{kcal.mol}^{-1})$
HT - N - C - O	0.000	4.900	0.000
HC - N - C - O	0.000	4.900	0.000
$\mathrm{HT}-\mathrm{N}-\mathrm{C}-\mathrm{N}$	0.000	4.900	0.000
$\mathrm{HC}-\mathrm{N}-\mathrm{C}-\mathrm{N}$	0.000	4.900	0.000
HT - N - C - HC (improper)	0.000	21.000	0.000
O - C - N - N (improper)	0.000	5.000	0.000

 Table S16: OPLS dihedral parameters for urea [1].

5. OPLS Force Field Parameters for Glycerol

atom	atom type	partial charge	$\epsilon/(\text{kcal.mol}^{-1})$	$\sigma/(\text{\AA})$
C1, C3	CB	0.16000	0.1452	3.50
C2	CM	0.14200	0.1452	3.50
H1 - H4	HC	0.06370	0.0660	2.50
H5	HZ	0.02210	0.0660	2.50
H6, H7	НО	0.03043	0.0010	0.10
H8	HM	0.29120	0.0010	0.10
01, 03	OH	-0.54700	0.3740	3.07
O2	OM	-0.54470	0.3740	3.07

 Table S17: OPLS atom types and non-bonded parameters for glycerol [1].

bond type	$k_{\rm r}/({\rm kcal.mol^{-1}}.{\rm \AA^{-2}})$	$r_0/(\text{\AA})$
OM - CM	320	1.410
$\mathrm{CB}-\mathrm{CM}$	268	1.529
$\mathrm{HM}-\mathrm{OM}$	553	0.945
$\mathrm{HZ}-\mathrm{CM}$	340	1.090
$\mathrm{HC}-\mathrm{CB}$	340	1.090
OH - CB	320	1.410
$\mathrm{HO}-\mathrm{OH}$	553	0.945

 Table S18: OPLS bond parameters for glycerol [1].

angle type	$k_{\theta}/(\text{kcal.mol}^{-1}.\text{rad}^{-2})$	θ_0
OM - CM - CB	50.00	108.5
$\rm CM - OM - HM$	55.00	108.5
$\rm OM-CM-HZ$	35.00	109.5
$\rm CM - CB - HC$	37.50	110.7
$\rm CM - CB - OH$	50.00	109.5
CB - OH - HO	55.00	108.5
CB - CM - CB	58.35	112.7
$\mathrm{CB}-\mathrm{CM}-\mathrm{HZ}$	37.50	110.7
$\mathrm{HC} - \mathrm{CB} - \mathrm{HC}$	33.00	107.8
$\mathrm{HC} - \mathrm{CB} - \mathrm{OH}$	35.00	109.5

 Table S19: OPLS angle parameters for glycerol [1].

dihedral types	$V_1/(\text{kcal.mol}^{-1})$	$V_2/(\text{kcal.mol}^{-1})$	$V_3/(\text{kcal.mol}^{-1})$
HM - OM - CM - CB	-0.356	-0.174	0.492
$\mathrm{HZ}-\mathrm{CM}-\mathrm{OM}-\mathrm{HM}$	0.000	0.000	0.352
HC - CB - CM - OM	0.000	0.000	0.468
OH - CB - CM - OM	12.234	0.000	0.000
HO - OH - CB - CM	-0.356	-0.174	0.492
$\mathrm{HC}-\mathrm{CB}-\mathrm{CM}-\mathrm{CB}$	0.000	0.000	0.300
OH - CB - CM - CB	-1.552	0.000	0.000
$\mathrm{HC}-\mathrm{CB}-\mathrm{CM}-\mathrm{HZ}$	0.000	0.000	0.300
OH - CB - CM - HZ	0.000	0.000	0.468
HO - OH - CB - HC	0.000	0.000	0.352

 Table S20:
 OPLS dihedral parameters for glycerol [1].

6. OPLS Force Field Parameters for Ethylene Glycol

atom	atom type	partial charge	$\epsilon/(\text{kcal.mol}^{-1})$	$\sigma/(\text{\AA})$
C1, C2	CG	0.116	0.1155	3.50
H1 - H4	HG	0.048	0.0525	2.50
H5, H6	НО	0.348	0.0010	0.10
O1, O2	OG	-0.560	0.2975	3.00

 Table S21: OPLS atom types and non-bonded parameters for ethylene glycol [1].

552	0.045
000	0.945
320	1.410
268	1.529
340	1.090
	320 268 340

 Table S22: OPLS bond parameters for ethylene glycol [1].

angle type	$k_{\theta}/(\text{kcal.mol}^{-1}.\text{rad}^{-2})$	θ_0
HO - OG - CG	55.0	108.5
OG - CG - CG	50.0	108.0
OG - CG - HG	35.0	109.5
CG - CG - HG	37.5	110.7
$\mathrm{HG}-\mathrm{CG}-\mathrm{HG}$	33.0	107.8

 Table S23: OPLS angle parameters for ethylene glycol [1].

dihedral types	$V_1/(\text{kcal.mol}^{-1})$	$V_2/(\text{kcal.mol}^{-1})$	$V_3/(\text{kcal.mol}^{-1})$
OH - CG - CG - OH	3.887	-1.192	3.206
CG - CG - OH - HO	0.413	-0.754	1.028

 Table S24:
 OPLS dihedral parameters for ethylene glycol [1].

7. OPLS Force Field Parameters for Malonic Acid

atom	atom type	partial charge	$\epsilon/(\text{kcal.mol}^{-1})$	$\sigma/(\text{\AA})$
C1, C3	CD	0.416	0.2625	3.75
C2	CT	-0.096	0.1650	3.50
H1, H2	HC	0.048	0.0750	2.50
H3, H4	НО	0.360	0.0010	0.10
01, 02	OD	-0.352	0.5250	2.96
O3, O4	OH	-0.424	0.4250	3.00

Table S25: OPLS atom types and non-bonded parameters for malonic acid [1].

$k_{\rm r}/({\rm kcal.mol^{-1}}.{\rm \AA^{-2}})$	$r_0/(\text{\AA})$
570	1.229
450	1.364
317	1.522
553	0.945
340	1.090
	$\frac{k_{\rm r}/(\rm kcal.mol^{-1}.\AA^{-2})}{570}$ 450 317 553 340

 Table S26:
 OPLS bond parameters for malonic acid [1].

angle type	$k_{\theta}/(\text{kcal.mol}^{-1}.\text{rad}^{-2})$	θ_0
OD - CD - OH	80	121.0
OD - CD - CT	80	120.4
$\rm CD - OH - HO$	35	113.0
$\rm CD - CT - CD$	63	111.1
$\rm CD-CT-HC$	35	109.5
$\mathrm{CT}-\mathrm{CD}-\mathrm{OH}$	70	108.0
$\mathrm{HC}-\mathrm{CT}-\mathrm{HC}$	33	107.8

 Table S27: OPLS angle parameters for malonic acid [1].

dihedral types	$V_1/(\text{kcal.mol}^{-1})$	$V_2/(\text{kcal.mol}^{-1})$	$V_3/(\text{kcal.mol}^{-1})$
HO - OH - CD - CT	1.500	5.500	0.000
HC - CT - CD - OD	0.000	0.000	0.000
CD - CT - CD - OH	1.000	0.546	0.450
HC - CT - CD - OH	0.000	0.000	0.000
OD - CD - OH - HO	0.000	5.500	0.000
OD - CD - CT - CD	0.000	0.000	0.000
OH - CD - OD - CT (improper)	0.000	21.000	0.000

 Table S28: OPLS dihedral parameters for malonic acid [1].

8. OPLS Force Field Parameters for Oxalic acid

atom	atom type	partial charge	$\epsilon/(\text{kcal.mol}^{-1})$	$\sigma/(\text{\AA})$
C1, C2	CD	0.416	0.1575	3.75
H1, H2	HO	0.330	0.0010	0.10
01, 02	OD	-0.352	0.3150	2.96
O3, O4	OH	-0.394	0.2550	2.92

Table S29: OPLS atom types and non-bonded parameters for oxalic acid [1].

bond type	$k_{\rm r}/({\rm kcal.mol^{-1}}.{\rm \AA^{-2}})$	$r_0/(\text{\AA})$
OD - CD	570	1.229
OH - CD	450	1.364
$\rm CD-CD$	350	1.510
$\mathrm{HO}-\mathrm{OH}$	553	0.945

Table S30: OPLS bond parameters for oxalic acid [1].

angle type	$k_{\theta}/(\text{kcal.mol}^{-1}.\text{rad}^{-2})$	$ heta_0$
OH - CD - OD	80.00	121.00
$\rm CD - OH - HO$	35.00	113.00
$\rm CD - CD - OH$	70.96	118.03
$\rm CD - \rm CD - \rm OD$	80.00	121.40

 Table S31: OPLS angle parameters for oxalic acid [1].

dihedral types	$V_1/(\text{kcal.mol}^{-1})$	$V_2/(\text{kcal.mol}^{-1})$	$V_3/(\text{kcal.mol}^{-1})$
HO - OH - CD - CD	3.000	5.500	0.000
OH - CD - CD - OH	1.600	3.200	0.000
HO - OH - CD - OD	0.000	5.500	0.000
OD - CD - CD - OH	1.600	3.200	0.000
OD - CD - CD - OD	1.600	3.200	0.000
OH - CD - OD - CD (improper)	0.000	21.000	0.000

 Table S32:
 OPLS dihedral parameters for oxalic acid [1].

References

- [1] B. Doherty, O. Acevedo, The Journal of Physical Chemistry B 122 (2018) 9982–9993.
- [2] W. L. Jorgensen, D. S. Maxwell, J. Tirado-Rives, Journal of the American Chemical Society 118 (1996) 11225–11236.
- [3] J. Wang, R. M. Wolf, J. W. Caldwell, P. A. Kollman, D. A. Case, Journal of Computational Chemistry 25 (2004) 1157–1174.
- [4] S. L. Perkins, P. Painter, C. M. Colina, Journal of Physical Chemistry B 117 (2013) 10250–10260.