Supporting Information: Prediction of Composition-Dependent Self-Diffusion Coefficients in Binary Liquid Mixtures: The Missing Link for Darken-Based Models

Ludger Wolff,[†] Seyed Hossein Jamali,[‡] Tim M. Becker,[‡] Othonas A. Moultos,[‡] Thijs J. H. Vlugt,[‡] and André Bardow^{*,†}

Institute of Technical Thermodynamics, RWTH Aachen University, 52056 Aachen, Germany, and Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands

E-mail: andre.bardow@ltt.rwth-aachen.de

 $^{^{*}\}mathrm{To}$ whom correspondence should be addressed

[†]RWTH Aachen University

[‡]Delft University of Technology

Contents

$\mathbf{S1}$	Self	-diffusion coefficients of Lennard-Jones (LJ) systems	S3					
	S1.1	Relative deviations $\Delta D_{2,\text{self,rel}}$ of the McCarty-Mason prediction as a function						
		of the thermodynamic factor Γ for component 2	S3					
	S1.2	LJ systems with molar mass ratios $m_2/m_1 < 2$	S4					
	S1.3	LJ systems with molar mass ratios $m_2/m_1 > 2$	S14					
$\mathbf{S2}$	Self	-diffusion coefficients of molecular systems (experimental data)	S25					
	S2.1	Relative deviations $\Delta D_{2,\text{self,rel}}$ of the McCarty-Mason prediction as a function						
		of the thermodynamic factor Γ for component 2	S25					
	S2.2	Molecular systems with molar mass ratios $M_2/M_1 < 2$ and without dimensing						
		species	S26					
	S2.3	Molecular systems with molar mass ratios $M_2/M_1 > 2$ and/or with dimerising						
		species	S32					
S3 References for the experimental data used in this work								

- S1 Self-diffusion coefficients of Lennard-Jones (LJ) systems
- S1.1 Relative deviations $\Delta D_{2,\text{self,rel}}$ of the McCarty-Mason prediction as a function of the thermodynamic factor Γ for component 2

Figure S1: Relative deviations $\Delta D_{2,\text{self,rel}}$ of the McCarty-Mason prediction as function of the thermodynamic factor Γ for LJ systems.

(a) $\Delta D_{2,\text{self,rel}}$ for all LJ systems, differentiated by the molar mass ratios m_2/m_1 .

(b) $\Delta D_{2,\text{self,rel}}$ for LJ systems with molar mass ratios $m_2/m_1 < 2$ and best fit of Equation 15 (black line) for $0 < \Gamma < 2$ (indicated by the vertical dashed line).

S1.2 LJ systems with molar mass ratios $m_2/m_1 < 2$

Composition-dependent self-diffusion coefficients $D_{i,\text{self}}$, thermodynamic factors $\Gamma - 1$, and relative deviations $\Delta D_{i,\text{self,rel}}$ of LJ systems with molar mass ratios $m_2/m_1 < 2$. The specifications of the LJ systems ϵ_2/ϵ_1 , σ_2/σ_1 , m_2/m_1 , and k_{ij} are given in the title of each figure. **Top figures**: Blue stars: Simulation results of self-diffusion coefficients $D_{i,\text{self}}$ of binary LJ systems as function of the mole fraction x_1 of the first species. Blue dashed line: smoothing fit to the simulation results; red circles/line: predictions of the McCarty-Mason equation (Equation 6); green diamonds/line: predictions of the modified McCarty-Mason equation (Equation 25). The error bars of $D_{i,\text{self}}$ are smaller than the symbols in most cases. Please note that y-axes are adapted for each system.

Bottom figures: Composition dependence of the thermodynamic factor $\Gamma - 1$ (blue stars/line, left axis) and composition dependence of the relative deviation $\Delta D_{i,\text{self,rel}}$ between the selfdiffusion coefficients and the predictions of the McCarty-Mason equation (Equation 6) (red circles/line, right axis) and the modified McCarthy-Mason equation (Equation 25) (green diamonds/line, right axis). A clear correlation between $\Gamma - 1$ and $\Delta D_{i,\text{self,rel}}$ can be observed. The error bars of $\Gamma - 1$ are smaller than the symbols in most cases. Please note that y-axes are adapted for each system.

S1.3 LJ systems with molar mass ratios $m_2/m_1 > 2$

Composition-dependent self-diffusion coefficients $D_{i,\text{self}}$, thermodynamic factors $\Gamma - 1$, and relative deviations $\Delta D_{i,\text{self,rel}}$ of LJ systems with molar mass ratios $m_2/m_1 > 2$. The specifications of the LJ systems ϵ_2/ϵ_1 , σ_2/σ_1 , m_2/m_1 , and k_{ij} are given in the title of each figure. **Top figures**: Blue stars: Simulation results of self-diffusion coefficients $D_{i,\text{self}}$ of binary LJ systems as function of the mole fraction x_1 of the first species. Blue dashed line: smoothing fit to the simulation results; red circles/line: predictions of the McCarty-Mason equation (Equation 6); green diamonds/line: predictions of the modified McCarty-Mason equation (Equation 25). The error bars of $D_{i,\text{self}}$ are smaller than the symbols in most cases. Please note that y-axes are adapted for each system.

Bottom figures: Composition dependence of the thermodynamic factor $\Gamma - 1$ (blue stars/line, left axis) and composition dependence of the relative deviation $\Delta D_{i,\text{self,rel}}$ between the selfdiffusion coefficients and the predictions of the McCarty-Mason equation (Equation 6) (red circles/line, right axis) and the modified McCarthy-Mason equation (Equation 25) (green diamonds/line, right axis). A clear correlation between $\Gamma - 1$ and $\Delta D_{i,\text{self,rel}}$ can be observed. The error bars of $\Gamma - 1$ are smaller than the symbols in most cases. Please note that y-axes are adapted for each system.

- S2 Self-diffusion coefficients of molecular systems (experimental data)
- S2.1 Relative deviations $\Delta D_{2,\text{self,rel}}$ of the McCarty-Mason prediction as a function of the thermodynamic factor Γ for component 2

Figure S2: Relative deviations $\Delta D_{2,\text{self,rel}}$ of the McCarty-Mason prediction (Equation (6)) as function of the thermodynamic factor Γ for molecular systems (symbols) and linear fit of $\Delta D_{2,\text{self,rel}}$ derived from LJ systems (black line, cf. Equation (23)). Stars: Experimental data with thermodynamic factors calculated with Redlich-Kister (RK). Diamonds: Experimental data with thermodynamic factors calculated with NRTL. Plus symbols: Experimental data with thermodynamic factors reported in literature.

(a) $\Delta D_{2,\text{self,rel}}$ for all considered molecular systems.

(b) $\Delta D_{2,\text{self,rel}}$ for molecular systems with molar mass ratios $M_2/M_1 < 2$ and without dimerising species.

S2.2 Molecular systems with molar mass ratios $M_2/M_1 < 2$ and without dimensing species

Composition-dependent self-diffusion coefficients $D_{i,\text{self}}$, thermodynamic factors $\Gamma - 1$, and relative deviations $\Delta D_{i,\text{self},\text{rel}}$ of molecular systems with molar mass ratios $M_2/M_1 < 2$ and without dimerising species. The specific components of each molecular system are given in the title of each figure.

Top figures: Blue stars: Experimental data of composition-dependent self-diffusion coefficients $D_{i,\text{self}}$. Blue dashed line: smoothing fit of the experimental self-diffusion coefficients; red circles/line: predictions of the McCarty-Mason equation (Equation 6); green diamonds/line: predictions of the modified McCarty-Mason equation (Equation 25).

Bottom figures: Composition dependence of the thermodynamic factor $\Gamma - 1$ (blue symbols/line, left axis) and composition dependence of the relative deviation $\Delta D_{i,\text{self,rel}}$ between the experimental self-diffusion coefficients and the predictions of the McCarty-Mason equation (Equation 6) (red circles/line, right axis) and the modified McCarthy-Mason equation (Equation 25) (green symbols/line, right axis). The symbols for the thermodynamic factors and the predictions of the modified McCarty-Mason predictions indicate the source of the thermodynamic factor calculations: Redlich-Kister (stars), NRTL (diamonds), or reported directly in literature (crosses).

S2.3 Molecular systems with molar mass ratios $M_2/M_1 > 2$ and/or with dimensing species

Composition-dependent self-diffusion coefficients $D_{i,\text{self}}$, thermodynamic factors $\Gamma - 1$, and relative deviations $\Delta D_{i,\text{self,rel}}$ of molecular systems with molar mass ratios $M_2/M_1 > 2$ and/or with dimerising species. The specific components of each molecular system are given in the title of each figure.

Top figures: Blue stars: Experimental data of composition-dependent self-diffusion coefficients $D_{i,\text{self}}$. Blue dashed line: smoothing fit of the experimental self-diffusion coefficients; red circles/line: predictions of the McCarty-Mason equation (Equation 6); green diamonds/line: predictions of the modified McCarty-Mason equation (Equation 25).

Bottom figures: Composition dependence of the thermodynamic factor $\Gamma - 1$ (blue symbols/line, left axis) and composition dependence of the relative deviation $\Delta D_{i,\text{self,rel}}$ between the experimental self-diffusion coefficients and the predictions of the McCarty-Mason equation (Equation 6) (red circles/line, right axis) and the modified McCarthy-Mason equation (Equation 25) (green symbols/line, right axis). The symbols for the thermodynamic factors and the predictions of the modified McCarty-Mason predictions indicate the source of the thermodynamic factor calculations: Redlich-Kister (stars), NRTL (diamonds), or reported directly in literature (crosses).

S3 References for the experimental data used in this work

C	Diffusion coefficients			Thermodynamic factor		
System	D_{12}	$D_{1,\text{self}}$	$D_{2,\text{self}}$	Redlich-Kister (RK)	NRTL	reported in Literature (Lit)
Acatona Bannana	Anderson et al. ¹ ,	Yoshinobu and Yasumichi ²	Yoshinobu and Yasumichi ²	Moggridge ³	Zhu et al. ⁴	-
Acetone-Benzene	Cullinan and Toor ⁵					
Acetone-CarbonTetrachloride	Anderson et al. ¹ ,	Hardt et al. ⁶	Hardt et al. ⁶	Moggridge ³	-	-
Acetone-Carbon Tetrachioride	Cullinan and Toor ⁵					
	McCall and Douglass ⁷ ,	D'Agostino et al. ⁸	D'Agostino et al. ⁸	D'Agostino et al. ⁸	Gmehling et al. ⁹	-
Acetone-Chloroform	Tyn and Calus ¹⁰ ,					
	Anderson et al. ¹					
	Anderson et al. ¹ ,	Mills and Hertz ¹¹	Mills and Hertz ¹¹	Moggridge ³	Gmehling et al. ⁹	-
	Grossmann and Winkelmann ¹² ,					
Acetone-Water	Rehfeldt and Stichlmair ¹³ ,					
	Tyn and Calus ¹⁰ ,					
	Zhou et al. ¹⁴	12	12			
Acetonitrile-Water	Easteal et al. ¹⁵	Easteal et al. ¹⁵	Easteal et al. ¹⁵	Fitted from data of French ¹⁶	-	-
Cyclohexane-Benzene	Harned ¹⁷	Mills ¹⁸	Mills ¹⁸	Moggridge ³	-	-
Diethylether-Chloroform	Sanni et al. ¹⁹ ,	Weingärtner ²⁰	Weingärtner ²⁰	Moggridge ³	-	-
Biethylether Chiefelerin	Weingärtner ²⁰					
Ethanol-Benzene	Anderson et al. ¹ ,	Johnson and Babb ²¹	Johnson and Babb ²¹	-	Zhu et al. ⁴	Guevara-Carrion et al. ²² *
	Zhu et al. ⁴	~	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~			
	Hammond and Stokes ²³ ,	Hardt et al. ⁶	Hardt et al. ⁶	-	-	Guevara-Carrion et al. ^{22*}
Ethanol-Carbon Tetrachloride	Longsworth ²⁴ ,					
	Bosse and Bart ²⁵					
Heptane-Benzene	Harris et al. ²⁶	Harris et al. ²⁶	Harris et al. ²⁶	Moggridge ³	-	-
Hexane-Benzene	Harris et al. ²⁶	Harris et al. ²⁶	Harris et al. ²⁶	Moggridge ³	-	-
Hexane-Toluene	Ghai and Dullien ²⁷	Ghai and Dullien ²⁷	Ghai and Dullien ²⁷	Moggridge ³	-	-
Methanol-Benzene	Caldwell and Babb ²⁸	Aoyagi and Albright ²⁹	Aoyagi and Albright ²⁹	-	-	Guevara-Carrion et al. ²² *
Michianor Benzene		Johnson and Babb ²¹	Johnson and Babb ²¹			
	Anderson et al. ¹ ,	Prabhakar and Weingärtner ³⁰	Prabhakar and Weingärtner ³⁰	-	-	Guevara-Carrion et al. ²² *
Methanol-Carbon Tetrachloride	Prabhakar and Weingärtner ³⁰ ,					
	Longsworth ²⁴					
	Chang et al. ³¹ ,	Derlacki et al. ³²	Derlacki et al. ³²	Moggridge ³	-	-
Methanol-Water	Derlacki et al. ³²					
	Bosse and Bart ²⁵					
Nitrobenzene-Hexane	Haase and Siry ³³	D'Agostino et al. ³⁴	D'Agostino et al. ³⁴	D'Agostino et al. ³⁴	-	-
Water-N-methylpyridine	Ambrosone et al. ³⁵	Ambrosone et al. ³⁵	Ambrosone et al. ³⁵	Moggridge ³	Zhu et al. ⁴	-

Table S1: References for the experimental data used in this work.

*MD simulation results verified with experimental data

References

- (1) Anderson, D. K.; Hall, J. R.; Babb, A. L. J. Phys. Chem. 1958, 62, 404–408.
- (2) Yoshinobu, K.; Yasumichi, O. B. Chem. Soc. Jpn. 1972, 45, 2437–2439.
- (3) Moggridge, G. Chem. Eng. Sci. 2012, 71, 226–238.
- (4) Zhu, Q.; Moggridge, G. D.; D'Agostino, C. Chem. Eng. Sci. 2015, 132, 250–258.
- (5) Cullinan, H. T.; Toor, H. L. J. Phys. Chem. 1965, 69, 3941–3949.
- (6) Hardt, A. P.; Anderson, D. K.; Rathbun, R.; Mar, B. W.; Babb, A. L. J. Phys. Chem. 1959, 63, 2059–2061.
- (7) McCall, D. W.; Douglass, D. C. J. Chem. Phys. 1967, 71, 987–997.
- (8) D'Agostino, C.; Stephens, J.; Parkinson, J.; Mantle, M.; Gladden, L.; Moggridge, G. Chem. Eng. Sci. 2013, 95, 43–47.
- (9) Gmehling, J.; Onken, U.; Arlt, W. Vapor-liquid equilibrium data collection; Dechema: Frankfurt am Main, 1979.
- (10) Tyn, M. T.; Calus, W. F. J. Chem. Eng. Data 1975, 20, 310–316.
- (11) Mills, R.; Hertz, H. G. J. Phys. Chem. 1980, 84, 220–224.
- (12) Grossmann, T.; Winkelmann, J. J. Chem. Eng. Data 2005, 50, 1396–1403.
- (13) Rehfeldt, S.; Stichlmair, J. Fluid Phase Equilibr. 2010, 290, 1–14.
- (14) Zhou, M.; Yuan, X. G.; Zhang, Y.; Yu, K. T. Ind. Eng. Chem. Res. 2013, 52, 10845–10852.
- (15) Easteal, A.; Woolf, L.; Mills, R. Z. Phys. Chem. 1987, 155, 69–78.
- (16) French, H. J. Chem. Thermodyn. **1987**, 19, 1155–1161.

- (17) Harned, H. S. Discuss. Faraday. Soc. 1957, 24, 7–16.
- (18) Mills, R. J. Phys. Chem. 1965, 69, 3116–3119.
- (19) Sanni, S. A.; Fell, C. J. D.; Hutchison, H. P. J. Chem. Eng. Data 1971, 16, 424–427.
- (20) Weingärtner, H. Ber. Bunsenges. Phys. Chem. 1990, 94, 358–364.
- (21) Johnson, P. A.; Babb, A. L. J. Phys. Chem. 1956, 60, 14–19.
- (22) Guevara-Carrion, G.; Janzen, T.; Muñoz-Muñoz, Y. M.; Vrabec, J. J. Chem. Phys. 2016, 144, 124501.
- (23) Hammond, B.; Stokes, R. Trans. Faraday Soc. 1955, 51, 1641.
- (24) Longsworth, L. J. Colloid. Interf. Sci. 1966, 22, 3–11.
- (25) Bosse, D.; Bart, H.-J. J. Chem. Eng. Data 2005, 50, 1525–1528.
- (26) Harris, K. R.; Pua, C. K.; Dunlop, P. J. J. Phys. Chem. 1970, 74, 3518–3529.
- (27) Ghai, R. K.; Dullien, F. A. L. J. Phys. Chem. 1974, 78, 2283–2291.
- (28) Caldwell, C. S.; Babb, A. L. J. Phys. Chem. 1956, 60, 51–56.
- (29) Aoyagi, K.; Albright, J. G. J. Phys. chem. 1972, 76, 2572–2577.
- (30) Prabhakar, S.; Weingärtner, H. Z. Phys. Chem. 1983, 137, 1–12.
- (31) Chang, L.-C.; Lin, T.-I.; Li, M.-H. J. Chem. Eng. Data 2005, 50, 77–84.
- (32) Derlacki, Z. J.; Easteal, A. J.; Edge, A. V. J.; Woolf, L. A. J. Phys. Chem. 1985, 89, 5318–5322.
- (33) Haase, R.; Siry, M. Z. Phys. Chem. **1968**, 57, 56–73.
- (34) D'Agostino, C.; Mantle, M. D.; Gladden, L.; Moggridge, G. Chem. Eng. Sci. 2011, 66, 3898–3906.

(35) Ambrosone, L.; D'Errico, G.; Sartorio, R.; Vitagliano, V. J. Chem. Soc., Faraday Trans.
1995, 91, 1339–1344.