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Simulation details

The Lennard-Jones parameters for the framework atoms are shown in Table S1. The force

field parameters for methanol and ethanol are shown in Table S2.

Validation

The simulated and experimentally measured methanol/ethanol adsorption isotherms for the

YANBAR structure at 303K and 313K are shown in Figure S1. This figure shows that the

simulation and experimental results are very similar. The shapes of the isotherms are in

a good agreement. It also can be observed for methanol that the experimental isotherm is

shifted to lower pressures compared to the simulated isotherm.

The simulated and experimentally measured methanol and ethanol adsorption isotherms

for ZIF-90 at 303K and 313K are shown in Figure S2. This figure shows that the simulation

and experimental results show a reasonable agreement. The simulated loadings are higher

than the experimentally measured ones. This may be caused by the fact that the defects of

the structure are not taken into account in the simulations.

The simulated and experimentally measured methanol and ethanol adsorption isotherms

for CuBTC (referred to as DOTSOV in DDEC1) at 323K are shown in Figure S3. In Fig-

ure S3 it can be seen that the experimental and simulation results differ. This behavior

can be explained by the fact that the Cu-BTC structure has Coordinatively Unsaturated

Sites (CUS). This means that during the adsorption process the methanol/ethanol is irre-

versibly adsorbed by modifying the first coordination sphere of the metal cluster.2 Because

of its irreversible nature, this phenomena is undesirable for application in AHP/ACs since

it would require significantly higher desorption temperatures. The differences between the

simulated and experimentally measured isotherms can be understood by considering the

governing effects during the adsorption process. At the beginning of the adsorption process,

methanol/ethanol molecules coordinate to the open metal sites. This effect is not accounted
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for in the simulation method. The different loadings at the first part of the isotherms

(p p−1
0 < 0.04 for methanol, p p−1

0 < 0.03 for ethanol, where p0 is the experimentally mea-

sured saturation pressure of the adsorbate: p0 = 55.18 kPa for methanol, p0 = 29.23 kPa for

ethanol)3 is caused by the effect of the CUS. When the CUS are saturated, the clustering of

the adsorbate molecules happens which results in the occurrence of the adsorption step in

the isotherm. This effect is reasonable well accounted for in the simulation method as can

be observed in Figure S3. The location of the adsorption step and the uptakes at the step

are in a reasonable agreement for the experimental and simulated isotherms. Considering

structures with larger pore dimensions, as with structures in this project, this difference

caused by the CUS is less pronounced since the clustering effect becomes more dominant

in determining the loadings. Hence, despite the difference at lower relative pressures the

location of the adsorption step and the loadings near the step can be determined with a

reasonable accuracy.

The simulated and experimentally measured methanol adsorption isotherms for the WOJJOV

structure at 298K are shown in Figure S4. The synthesized structure may have defects, for

example missing linkers, which is not considered during the simulations. In the simulations

the reported CIF file is used which contains a perfect (without any defect) crystal structure.

Therefore, the effect of the defects are not considered in the simulations which may be the

cause of the observed difference in the adsorption isotherms.

The methanol adsorption isotherm of ODUNEH(Zn) structure at 293K is shown by Fig-

ure S5. It can be seen in Figure S5 that there is difference between the experimental and

simulation results. In the paper which reports the synthesis of the MOF, the framework is

identified as flexible.4 Flexibility means that the MOF is capable of structural transformation

towards external stimuli for instance adsorption/desorption of guest molecules.5 Since the

MOFs are considered rigid in all simulations, there is no possibility of structural transforma-

tion during the adsorption process. This lack of flexibility means that the size and shape of

the pores of the simulated structure can be different from the experiments. This difference in
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structural properties may be the source of the difference in the simulated and experimental

isotherm. To predict the flexibility of MOFs, structure specific force field has to be derived

which is very challenging and time consuming task. This prediction is computationally very

expensive for a large amount of structures.

It can be concluded that the experimental isotherms are reproduced reasonably well by

the simulation method and the applied force field. In case of CUS containing MOFs, it is

shown that the location of the step is captured reasonably well and considering the range

of diameters in the database the deviation in loadings caused by the CUS has a smaller

influence. Although, the flexibility of the structures and the presence of CUS can influence

the simulated results, the prediction of these properties are usually omitted in reported

screening studies on MOFs.6,7 This choice of neglecting these properties can be understood

by the fact that there are no available, transferable force fields to account for the effect of

CUS and neither for the flexibility for the structure.

Methanol screening

Step 2

The distribution of working capacities for the structures selected in the first step is shown

in Figure S6. It can be seen that most of the structures show lower working capacity than

the desired 0.4 ml working fluid per 1 ml of adsorbent.

Step 3

The new data points are computed at p p−1
0 = 0.1, 0.2, 0.3 and 0.4 for every structure.

From the uptakes the deliverable working capacity (∆Wdel) is calculated. ∆Wdel is defined

as the highest difference in loading between two adjacent relative pressure points. Relative

pressure intervals, where the assumed adsorption step occurs, can be defined by considering

the deliverable working capacities. Based on the position of the assumed adsorption step

S-4



the structures are grouped into four bins:

• First bin: ∆Wdel is in the range 0.05 ≤ p p−1
0 ≤ 0.1

• Second bin: ∆Wdel is in the range 0.1 < p p−1
0 ≤ 0.2

• Third bin: ∆Wdel is in the range 0.2 < p p−1
0 ≤ 0.3

• Fourth bin: ∆Wdel is in the range 0.3 < p p−1
0 ≤ 0.4

In Figure S7, the deliverable working capacity is shown as a function of the helium void

fraction. The color coding represents the bin assigned to the structure. Isotherms for the

third step are shown below per bin.

First bin:

The isotherms obtained by performing the third screening step with methanol are shown

below for the structures in the first bin. The isotherms are shown in 6 figures since the large

number of structures. The isotherms are shown in Figures S8-S13.

Second bin:

The isotherms obtained by performing the third screening step for methanol are shown below

for the structures in the second bin. The isotherms are shown in Figures S14-S15.

Third bin:

Isotherms obtained by performing the third screening step for methanol are shown below for

the structures in the third bin (Figures S16-S17).

Fourth bin:

Isotherms obtained by performing the third screening step for methanol are shown below for

the structures in the fourth bin (Figure S18).

Step 4

Isotherms with the mid-density scheme:

The adsorption isotherms of each structure considered in the fourth screening step with

methanol are shown in Figures S19-S42.

S-5



Ethanol screening

Step 1

In Figure S43, the calculated methanol and predicted ethanol working capacities are shown

for all the structures considered in the second screening step with methanol as a function of

structure density.

Step 3

The deliverable working capacity is plotted as a function of the helium void fraction for every

structure is shown in Figure S44. The color code represents the bin assigned to the given

structure.

Step 4

The structural properties of the structures and the results for the mid-density method with

ethanol (Step 4) are shown in Table S3.
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Table S1: Force field parameters (Lennard-Jones parameters) used for the
framework atoms in the simulations.8,9 The partial charges of the atoms are
taken from the CIFs reported in the DDEC database.1

Atom ε / [K] σ / [Å] Atom ε / [K] σ / [Å]
Ag 18.11 2.80 Mo 28.18 2.72
Al 156.00 3.91 N 38.95 3.26
As 206.34 3.70 Na 251.63 2.80
Au 19.63 2.93 Nb 29.70 2.82
B 47.81 3.58 Nd 5.03 3.19
Ba 183.19 3.30 Ne 21.14 2.89
Be 42.77 2.45 Ni 7.55 2.52
Bi 260.69 3.89 Np 9.56 3.05
Br 186.19 3.52 O 48.16 3.03
C 47.86 3.47 P 161.03 3.70
Ca 25.16 3.09 Pb 333.67 3.83
Cd 114.73 2.54 Pr 5.03 3.21
Ce 6.54 3.17 Pt 40.26 2.45
Cl 142.56 3.52 Pu 8.05 3.05
Co 7.05 2.56 Rb 20.13 3.67
Cr 7.55 2.69 Re 33.22 2.63
Cs 22.65 4.02 Rh 26.67 2.61
Cu 2.52 3.11 Ru 28.18 2.64
Dy 3.52 3.05 S 173.11 3.59
Er 3.52 3.02 Sb 225.95 3.94
F 36.48 3.09 Sc 9.56 2.94
Fe 6.54 2.59 Se 216.41 3.59
Ga 208.84 3.90 Si 156.00 3.80
Gd 4.53 3.00 Sm 4.03 3.14
Ge 201.31 3.80 Sn 276.80 3.98
H 7.65 2.85 Sr 118.27 3.24
He 10.90 2.64 Te 200.28 3.98
Hf 36.24 2.80 Th 13.09 3.03
Hg 193.76 2.41 Ti 8.55 2.83
Ho 3.52 3.04 Tm 3.02 3.01
I 256.67 3.70 U 11.07 3.03
In 301.43 3.98 V 8.05 2.80
K 17.61 3.40 W 33.72 2.73
La 8.56 3.14 Y 36.24 2.98
Li 12.58 2.18 Yb 114.75 2.99
Lu 20.63 3.24 Zn 62.40 2.46
Mg 55.86 2.69 Zr 34.72 2.78
Mn 6.54 2.64
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Table S2: Force field parameters used for methanol and ethanol in the simula-
tions.10

Atom type ε / [K] σ / [Å] q / [e]
CH3 98 3.75 0.265
CH2 46 3.95 0.265
O 93 3.02 -0.70
H 0.5 0.5 0.435

Bending type Θ / [◦] kΘ/kB / [Krad−2]
CHx − (O)− H 108.5 55400

CHx − (CHy)−OH 109.5 50400

Torsion type
CHx − (CH2)− (O)− H

c0/kB / [K] c1/kB / [K] c2/kB / [K] c3/kB / [K]
0.00 209.82 -29.17 187.93
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Figure S1: The excess amount of adsorbed methanol (left) and ethanol (right) as a function
of relative pressure, p p−1

0 (where p0 is the saturation pressure of the adsorbate), for the
YANBAR structure at 308 K (for methanol p0 = 27.75 kPa, for ethanol p0 = 13.65 kPa3)
and 313 K (for methanol p0 = 35.18 kPa, for ethanol p0 = 17.75 kPa).3 Experimental data is
reproduced from literature.21 The experimental and simulation results are depicted by open
and closed symbols, respectively.
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Figure S2: The excess amount of adsorbed methanol (left) and ethanol (right) as a function
of relative pressure, p p−1

0 (where p0 is the saturation pressure of the adsorbate), for ZIF-90
at 308 K (for methanol p0 = 27.75 kPa, for ethanol p0 = 13.65 kPa).3 Experimental data is
reproduced from literature.22 The experimental and simulation results are depicted by open
and closed symbols, respectively.
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Figure S3: The excess amount of adsorbed methanol (left) and ethanol (right) as a function
of relative pressure, p p−1

0 (where p0 is the saturation pressure of the adsorbate), for CuBTC
at 323K (for methanol p0 = 55.18 kPa, for ethanol p0 = 29.23 kPa).3 Experimental data is
reproduced from literature.23 The experimental and simulation results are depicted by open
and closed symbols, respectively.
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Figure S4: The excess amount of adsorbed methanol (left) and ethanol (right) as a function
of relative pressure, p p−1

0 (where p0 is the saturation pressure of the adsorbate), for the
WOJJOV structure at 298K (for methanol p0 = 16.81 kPa, for ethanol p0 = 7.82 kPa).3

Experimental data is reproduced from literature.4 The experimental and simulation results
are depicted by open and closed symbols, respectively.
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Figure S5: The excess amount of adsorbed methanol as a function of relative pressure, p p−1
0

(where p0 is the saturation pressure of the adsorbate), for the ODUNEH structure at 293K
(p0 = 12.89 kPa).3 Experimental data is reproduced from literature.24 The experimental and
simulation results are depicted by open and closed symbols, respectively.
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Figure S6: The number distribution of working capacities calculated for each structures
considered in the second screening step with methanol.
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Figure S8: The excess amount of adsorbed methanol as a function of relative pressure (p p−1
0 ,

where p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa)3 for the structures in
the first bin at the third selection step. The error bars indicate the 95% confidence intervals.
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Figure S9: The excess amount of adsorbed methanol as a function of relative pressure (p p−1
0 ,

where p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa)3 for the structures in
the first bin at the third selection step. The error bars indicate the 95% confidence intervals.

S-18



 0

 0.2

 0.4

 0.6

 0.8

 1

 0.05  0.1  0.2  0.3  0.4  0.5

∆
W

 /
 [
m

l 
m

l-1
]

p p0
-1

 / [-]

 WONZUV
 FECZAQ
 OBEDEE
 FAKLIO

 RAPYUE
 Co26NDP
 ANUGUM
 FUNBEW

Figure S10: The excess amount of adsorbed methanol as a function of relative pressure (p p−1
0 ,

where p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa)3 for the structures in
the first bin at the third selection step. The error bars indicate the 95% confidence intervals.
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Figure S11: The excess amount of adsorbed methanol as a function of relative pressure (p p−1
0 ,

where p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa)3 for the structures in
the first bin at the third selection step. The error bars indicate the 95% confidence intervals.
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Figure S12: The excess amount of adsorbed methanol as a function of relative pressure (p p−1
0 ,

where p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa)3 for the structures in
the first bin at the third selection step. The error bars indicate the 95% confidence intervals.
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Figure S13: The excess amount of adsorbed methanol as a function of relative pressure (p p−1
0 ,

where p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa)3 for the structures in
the first bin at the third selection step. The error bars indicate the 95% confidence intervals.
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Figure S14: The excess amount of adsorbed methanol as a function of relative pressure (p p−1
0 ,

where p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa)3 for the structures in the
second bin at the third selection step. The error bars indicate the 95% confidence intervals.
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Figure S15: The excess amount of adsorbed methanol as a function of relative pressure (p p−1
0 ,

where p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa)3 for the structures in the
second bin at the third selection step. The error bars indicate the 95% confidence intervals.
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Figure S16: The excess amount of adsorbed methanol as a function of relative pressure (p p−1
0 ,

where p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa)3 for the structures in the
third bin at the third selection step. The error bars indicate the 95% confidence intervals.

S-25



 0

 0.2

 0.4

 0.6

 0.8

 1

 0.05  0.1  0.2  0.3  0.4  0.5

∆
W

 /
 [
m

l 
m

l-1
]

p p0
-1

 / [-]

 EDUSIF
 LAWGUM
 LAWGOG
 HIFTOG01
 UNIGEE

 FEFDEB
 SAHYOQ03
 SAHYOQ04
 ATIJUJ
 DUXZIG01

Figure S17: The excess amount of adsorbed methanol as a function of relative pressure (p p−1
0 ,

where p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa)3 for the structures in the
third bin at the third selection step. The error bars indicate the 95% confidence intervals.
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Figure S18: The excess amount of adsorbed methanol as a function of relative pressure (p p−1
0 ,

where p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa)3 for the structures in the
fourth bin at the third selection step. The error bars indicate the 95% confidence intervals.
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Figure S19: Methanol adsorption isotherms calculated for the PEVQEO structure at 303K.
The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 , where p0

is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate the 95%
confidence intervals.
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Figure S20: Methanol adsorption isotherms with mid-density method for the AGAXOV
structure. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 ,
where p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate
the 95% confidence intervals.
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Figure S21: Methanol adsorption isotherms with mid-density method for the ANUGIA struc-
ture. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 , where
p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate the
95% confidence intervals.
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Figure S22: Methanol adsorption isotherms with mid-density method for the BEPRIZ struc-
ture. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 , where
p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate the
95% confidence intervals.
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Figure S23: Methanol adsorption isotherms with mid-density method for the FUNBEW
structure. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 ,
where p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate
the 95% confidence intervals.
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Figure S24: Methanol adsorption isotherms with mid-density method for the FUNCEX
structure. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 ,
where p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate
the 95% confidence intervals.
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Figure S25: Methanol adsorption isotherm with mid-density method for the GUNFAW01
structure. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 ,
where p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate
the 95% confidence intervals.
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Figure S26: Methanol adsorption isotherm with mid-density method for the HAFTOZ struc-
ture. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 , where
p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate the
95% confidence intervals.
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Figure S27: Methanol adsorption isotherm with mid-density method for the IRMOF-6 struc-
ture. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 , where
p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate the
95% confidence intervals.
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Figure S28: Methanol adsorption isotherm with mid-density method for the LAWGEW
structure. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 ,
where p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate
the 95% confidence intervals.

S-37



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.05  0.07  0.1  0.15  0.2  0.3  0.4  0.5

q
 /
 [
m

l 
m

l-1
]

p p0
-1

 / [-]

 LUYHAP-Empty box
 LUYHAP-Half
 LUYHAP-Saturated

Figure S29: Methanol adsorption isotherm with mid-density method for the LUYHAP struc-
ture. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 , where
p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate the
95% confidence intervals.
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Figure S30: Methanol adsorption isotherm with mid-density method for the MOF-1-Dybtsev-
dmol structure. The excess amount of adsorbed methanol as a function of relative pressure
(p p−1

0 , where p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars
indicate the 95% confidence intervals.
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Figure S31: Methanol adsorption isotherm with mid-density method for the MOYYIJ struc-
ture. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 , where
p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate the
95% confidence intervals.
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Figure S32: Methanol adsorption isotherm with mid-density method for the RUVKAV struc-
ture. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 , where
p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate the
95% confidence intervals.
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Figure S33: Methanol adsorption isotherm with mid-density method for the SAHYOQ03
structure. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 ,
where p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate
the 95% confidence intervals.
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Figure S34: Methanol adsorption isotherm with mid-density method for the SUKYIH struc-
ture. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 , where
p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate the
95% confidence intervals.
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Figure S35: Methanol adsorption isotherm with mid-density method for the VEXVAW struc-
ture. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 , where
p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate the
95% confidence intervals.
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Figure S36: Methanol adsorption isotherm with mid-density method for the XAMDUM01
structure. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 ,
where p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate
the 95% confidence intervals.
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Figure S37: Methanol adsorption isotherm with mid-density method for the XAWVUN
structure. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 ,
where p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate
the 95% confidence intervals.
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Figure S38: Methanol adsorption isotherm with mid-density method for the XEBHOC struc-
ture. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 , where
p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate the
95% confidence intervals.
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Figure S39: Methanol adsorption isotherm with mid-density method for the YUGLES struc-
ture. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 , where
p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate the
95% confidence intervals.

S-48



 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.01  0.05  0.07  0.1  0.15  0.2  0.3  0.4 0.5

q
 /
 [
m

l 
m

l-1
]

p p0
-1

 / [-]

 YURJUR-Empty box
 YURJUR-Saturated

Figure S40: Methanol adsorption isotherm with mid-density method for the YURJUR struc-
ture. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 , where
p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate the
95% confidence intervals.
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Figure S41: Methanol adsorption isotherm with mid-density method for the ZIGFEC struc-
ture. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 , where
p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate the
95% confidence intervals.
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Figure S42: Methanol adsorption isotherm with mid-density method for the ZnBDCdabco
structure. The excess amount of adsorbed methanol as a function of relative pressure (p p−1

0 ,
where p0 is the saturation pressure of the adsorbate, p0 = 21.7 kPa).3 The error bars indicate
the 95% confidence intervals.
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Figure S43: The working capacities of all structures considered in the second screening step
with methanol as a function of crystallographic density of the frameworks. The color code
represents the calculated methanol (gray), based on the simulation results, and the predicted
ethanol working capacities (orange) using Equation 3 in the main text.
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Figure S44: The deliverable working capacity shown as a function of the helium void fraction
for the 55 selected structures in the third screening step with ethanol. The color code
represents the bin assigned to the given structure. The bins are defined as follows, First:
0.05 ≤ p p−1

0 ≤ 0.1, Second: 0.1 < p p−1
0 ≤ 0.2, Third: 0.2 < p p−1

0 ≤ 0.3, Fourth: 0.3
< p p−1

0 ≤ 0.4.
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Figure S45: The deliverable working capacity of the best 23 structures with methanol as
working fluid as a function of the Volumetric Surface Area (VSA) of each structure.
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Figure S46: The deliverable working capacity of the best 23 structures with methanol as
working fluid as a function of the helium void fraction of each structure.
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