Predictions of water/oil interfacial tension at elevated temperatures and pressures: A molecular dynamics simulation study with biomolecular force fields

Supporting Information

Konstantinos D. Papavasileiou,¹ Othonas A. Moultos,² and Ioannis G. Economou^{1,3,*}

¹National Center for Scientific Research "Demokritos", Institute of Nanoscience and Nanotechnology, Molecular Thermodynamics and Modelling of Materials Laboratory, GR-15310 Aghia Paraskevi Attikis, Greece

²Engineering Thermodynamics, Process & Energy Department, Faculty of Mechanical, Maritime and Materials Engineering, Delft University of Technology, Leeghwaterstraat 39, 2628CB Delft, The Netherlands

³Texas A&M University at Qatar, Chemical Engineering Program, Education City, PO Box 23874, Doha, Qatar

^{*}To whom correspondence should be addressed

IGE: ioannis.economou@qatar.tamu.edu

As described in the manuscript, the LJ-PME method was applied for the treatment of long-range Lennard-Jones interactions, as this has been shown to improve the description in inhomogeneous systems such as water/hydrocarbon mixtures [1]. However, it has been found recently that the combination of GAFF and LJ-PME leads to overestimations in the surface tension of organic liquids [2]. The source of this overestimation has been attributed to be the fact that the AMBER force fields, such as GAFF and Lipid14, have been parametrized for long-range Lennard-Jones (LJ) corrections using a simple cut-off approach [2]. Moreover, it has been reported that using the LJ-PME scheme led to an increase of the surface tension in lipid monolayers of almost 25% [3], which is close to the overestimation of IFT in our simulations. Therefore, utilizing the LJ-PME approach, even though it is computationally robust, has not been extensively tested in conjunction with force fields optimized for the cut-off approach [2]. This, however, contradicts the original argument of the LJ-PME developers, who claim that using this method is equivalent to imposing a 16 Å cut-off for the LJ potential [3]. In order to examine whether the IFT values are overestimated as a result of using the LJ-PME treatment, we have performed additional simulations on all systems by employing a 16 Å cut-off.

From the IFT data collected in Table S7, it is deduced that the IFT values are independent of the long-range treatment used for the LJ potential. We therefore chose the LJ-PME method for the simulations presented in the manuscript.

GAFF	Lipid14	Description
c3	cD	sp3 carbon
ca	—	aromatic carbon
hc	hL	hydrogen bonded to aliphatic carbon without electron withdrawing group
ha	_	hydrogen bonded to aromatic carbon

Table S1. Lipid14 and GAFF atom types.

Table S2. Toluene GAFF atom types and partial charges.

Atom	Туре	Charge				
C1	cD	-0.218051				
H1	hL	0.043707				
H2	hL	0.043707				
H3	hL	0.043707				
C2	cD	0.184369				
H4	hL	-0.030719				
H5	hL	-0.030719				
C3	cD	-0.081636				
H6	hL	0.017473				
H7	hL	0.017473				
C4	cD	-0.000351				
H8	hL	0.010549				
H9	hL	0.010549				
C5	cD	-0.045994				
H10	hL	0.014082				
H11	hL	0.014082				
C6	cD	-0.016676				
H12	hL	0.012224				
H13	hL	0.012224				
C7	cD	-0.016676				
H14	hL	0.012224				
H15	hL	0.012224				
C8	cD	-0.045994				
H16	hL	0.014082				
H17	hL	0.014082				
C9	cD	-0.000351				
H18	hL	0.010549				
H19	hL	0.010549				
C10	cD	-0.081636				
H20	hL	0.017473				
H21	hL	0.017473				
C11	cD	0.184369				
H22	hL	-0.030719				
H23	hL	-0.030719				
C12	cD	-0.218051				
H24	hL	0.043707				
H25	hL	0.043707				
H26	hL	0.043707				

	Atom	Туре	Charge			
	TIP4P/2005					
H1 H2	0	OWT4	0.0000			
IW	H1	HW	0.5564			
	H2	HW	0.5564			
	IW	IW	-1.1128			
	TIP3P					
H1 H2	0	OW	-0.8340			
	H1	HW	0.4170			
	H2	HW	0.4170			
	SPC/E					
H1 H2	0	OW	-0.8476			
	H1	HW	0.4238			
	H2	HW	0.4238			

Table S4. TIP4P/2005, TIP3P and SPC/E water atom types and partial charges.

Type of interactionPotential function and parameters							
Bond stretching		$V_b(r_{ij}) = \frac{1}{2} k_{ij}^b(r_{ij})$	$(-b_{ij})^2$				
-	Bond k_{ij}^b (kJ mol ⁻¹ n			b_{ij} (nm)			
-	c3-c3	2.5363e+05		0.15350			
	c3-hc	2.8225e+05	0.10920				
	cD-cD	2.5363e+05		0.15350			
	cD-hL	2.8225e+05	0.10920				
	ca-ca	4.0033e+05	0.13870				
	ca-c3	2.7070e+05	0.15130				
	ca-ha	2.8811e+05		0.10870			
TIP4P/2005	HW-OWT4	4.6275e+05		0.09572			
-	IW-OWT4	_		0.01546			
TIP3P	HW-OW	4.6275e+05		0.09572			
SPC/E	HW-OW	3.4500e+05		0.10000			
Bond angle bending		$V_{a}\left(\theta_{ijk}\right) = \frac{1}{2}k_{ijk}^{\theta}\left(\theta_{ijk}\right)$	$_{k}- heta_{ijk}^{0}\Big)^{2}$				
-	Bond angle	Bond angle k_{ijk}^{θ} (kJ mol ⁻¹ rad ⁻²)		$ heta_{ijk}^0$ (°)			
-	cD-cD-hL	3.8802e+02		110.05			
	cD-cD-cD	5.2894e+02		110.63			
	hL-cD-hL	3.2995e+02		108.35			
	ca-ca-ca	5.6216e+02		119.97			
	c3-ca-ca	5.3421e+02		120.63			
	ca-ca-ha	4.0551e+02		120.01			
	ca-c3-hc	3.2995e+02		108.35			
TIP4P/2005	HW-OWT4-HW	8.3680e+02)e+02				
	HW-OWT4-IW	_		52.26			
TIP3P	HW-OW-HW	8.3680e+02		104.52			
SPC/E	HW-OW-HW 3.8300e+02			109.47			
Dihedral angles		$V_d\left(\varphi_{ijkl}\right) = k_{\varphi}\left(1 + \cos^2\theta_{ijkl}\right)$	$s(n\varphi-\varphi_s)$				
	Angle	k_{φ} (kJ mol ⁻¹)	φ_s (°)		n		
	cD-cD-cD-cD	1.30206	180.0	1			
	cD-cD-cD-cD	-0.51589 180.0		2			
	cD-cD-cD	0.48074	0.48074 0.0				
-	cD-cD-cD	-0.92006	0.0	4			
	cD-cD-cD	0.90793	0.0	5			

Table S5. GAFF, Lipid14, TIP4P/2005, TIP3P, SPC/E force field parameters employed in the IFT simulations.

Table S	55. Cont.
---------	-----------

Dihedral angles	hL-cD-cD-hL	0.6276	0	0.0		3			
C	cD-cD-cD-hL	0.6694	4	0.0	3				
	$V(\alpha) = \sum_{k=1}^{5} C(\cos(w))^{n} = \alpha - 180 C(k \operatorname{Imol}^{-1})$								
$ \sum_{n=0}^{r} \left(\varphi_{ijkl} \right) \sum_{n=0}^{r} \left(\varphi_{ijkl} \right) \left(\varphi_{ijkl} \right) = 0 $									
	Angle C_0 C_1 C_2 C_3				C_4	C_5			
	ca-ca-ca-ca	30.334	0.000	-30.334	0.000	0.000	0.000		
	ca-ca-ca-ha	30.334	0.000	-30.334	0.000	0.000	0.000		
	hc-c3-ca-ca	0.000	0.000	0.000	0.000	0.000	0.000		
	c3-ca-ca-ca	30.334	0.000	-30.334	0.000	0.000	0.000		
	c3-ca-ca-ha	30.334	0.000	-30.334	0.000	0.000	0.000		
	ha-ca-ca-ha	30.334	0.000	-30.334	0.000	0.000	0.000		
Improper dihadral anglas	$V_d\left(\varphi_{ijkl}\right) = k_{\varphi}\left(1 + \cos(n\varphi - \varphi_s)\right)$								
diffedial angles	Angle		k_{φ} (kJ m	ol ⁻¹)	φ_s (°)		п		
	ca-ca-ca-ha	4.60240			180.0	2			
	c3-ca-ca-ca	4.60240			180.0	2			
Non bonded Lennard-Jones	$V_{LJ} = 4\varepsilon_{ij} \left[\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right]$								
					σ (nm)	ε (k	J mol ⁻¹)		
	ca			0	.339970	0.	35982		
	ha			0	.259960	0.	06276		
	c3	0.339			.339970	0.	45773		
	hc	0.264950			0.06569				
	cD	0.339970				0.	0.45773		
	hL	0.260140					0.04184		
TIP4P/2005	OWT4			0	.315890	0.77491			
	HW		0.000000			0.00000			
	IW			0.000000 0.0			0.0000		
TIP3P	OW		0.315066			0.63627			
	HW			0.000000			0.00000		
SPC/E	OW 0.316				.316600	0 0.65000			
	HW 0.00000 0.00000						00000		
Non bonded electrostatic	$V_c(r_{ij}) = \frac{1}{4\pi\varepsilon_o} \frac{q_i q_j}{\varepsilon_r r_{ij}}$								
	F	artial char	ge values a	are provided	1 in Tables S	S2-S4.			

Т (К)		Difference (%)			
383.15		32.3 ± 0.4	Experiment	28.6	12.9
403.15	simulation	29.1 ± 0.6		26.4	10.2
423.15		27.5 ± 0.6		23.8	15.5
443.15		26.1 ± 0.6		20.2	29.2
			lodecane		
383.15		47.4 ± 0.8	Experiment	40.0	18.5
403.15	ation	44.7 ± 0.5		36.5	22.5
423.15	simul	41.7 ± 0.5		32.9	26.7
443.15		38.4 ± 0.9		28.5	34.7
		wa	ter/toluene	e/n-dodecane	
383.15		38.5 ± 1.0		31.4	22.6
403.15	simulation	36.4 ± 0.9	ment	29.0	25.5
423.15		33.9 ± 0.7	Exper	26.1	29.9
443.15		31.9± 0.8		22.6	41.2

Table S6. Calculated IFT values of our contest entry and benchmark experimental values. The water model used is TIP4P/2005.

T (K)	γ (mN/m)							
	water/toluene							
383.15	entry)	32.3 ± 0.4		33.1 ± 0.7	16 Å cut-off 10 ns	32.0 ± 0.6	Experiment	28.6
403.15	contest	29.1 ± 0.6	LJ-PME 10 ns	31.2 ± 1.0		30.3 ± 0.6		26.4
423.15	E 5 ns (27.5 ± 0.6		29.0 ± 0.6		28.6 ± 1.0		23.8
443.15	LJ-PM	26.1 ± 0.6		25.6 ± 0.7		25.5 ± 0.4		20.2
	water/n-dodecane							
383.15	contest entry)	47.4 ± 0.8		47.5 ± 0.8	SU	47.8 ± 1.3	Experiment	40.0
403.15		44.7 ± 0.5	LJ-PME 10 ns	45.4 ± 0.8	16 Å cut-off 10	45.3 ± 2.1		36.5
423.15	E 5 ns (41.7 ± 0.5		42.4 ± 0.8		42.1 ± 1.4		32.9
443.15	Md-ſ T	38.4 ± 0.9		39.8 ± 1.1		38.4 ± 0.8		28.5
	water/toluene/n-dodecane							
383.15	E 5 ns (contest entry)	38.5 ± 1.0		38.7 ± 0.8	SL	38.0 ± 0.7	Experiment	31.4
403.15		36.4 ± 0.9	E 10 ns	36.4 ± 0.3	16 Å cut-off 10 r	36.0 ± 0.6		29.0
423.15		33.9 ± 0.7	IMq-U	34.7 ± 0.4		33.9 ± 0.4		26.1
443.15	LJ-PM	31.9± 0.8		31.6 ± 0.9		30.9 ± 0.6		22.6

Table S7. Calculated IFT values with the LJ-PME approach and 16 Å cut-off treatment of the tail of Lennard-Jones potential. The water model used is TIP4P/2005.

Figure S1. Experimental and calculated interfacial tension values (contest entry) of water/toluene, water/*n*-dodecane and 50:50 (wt/wt) water/toluene/*n*-dodecane mixtures with the GAFF (toluene), Lipid14 (*n*-dodecane) and TIP5P/2005 (water) force fields.

Figure S2. Calculated interfacial tension of water/toluene, water/*n*-dodecane and 50:50 (wt/wt) water/toluene/*n*-dodecane mixtures obtained from longer runs (maybe add how many ns) and different treatments of the Lennard-Jones potential.

Figure S3. Equilibrated structures and partial densities of all systems studied using the SPC/E model for water, at different temperatures and pressure 1.83 MPa. Water, toluene and *n*-dodecane molecules are illustrated in green, gray and cyan colors, respectively.

Figure S4. Equilibrated structures and partial densities of all systems studied using the TIP3P model for water, at different temperatures and pressure 1.83 MPa. Water, toluene and *n*-dodecane molecules are illustrated in blue, gray and cyan colors, respectively.

References

- [1] L. Lundberg, O. Edholm, Dispersion corrections to the surface tension at planar surfaces, J. Chem. Theory Comput., 12 (2016) 4025-4032.
- [2] N.M. Fischer, P.J. van Maaren, J.C. Ditz, A. Yildirim, D. van der Spoel, Properties of organic liquids when simulated with long-range Lennard-Jones interactions, J. Chem. Theory Comput., 11 (2015) 2938-2944.
- [3] C.L. Wennberg, T. Murtola, B. Hess, E. Lindahl, Lennard-Jones lattice summation in bilayer simulations has critical effects on surface tension and lipid properties, J. Chem. Theory Comput., 9 (2013) 3527-3537.