Atomistic Molecular Dynamics Simulations of Carbon Dioxide Diffusivity in *n*-Hexane, *n*-Decane, *n*-Hexadecane, Cyclohexane and Squalane

Supporting information

Othonas A. Moultos¹, Ioannis N. Tsimpanogiannis^{1,2}, Athanassios Z. Panagiotopoulos³, J. P. Martin Trusler⁴ and Ioannis G. Economou^{1,*}

> ¹Chemical Engineering Program, Texas A&M University at Qatar, P.O. Box 23874, Doha, Qatar

²Environmental Research Laboratory, National Centre for Scientific Research "Demokritos", 15310 Aghia Paraskevi Attikis, Greece

³Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544, USA

⁴Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 AZ, United Kingdom

^{*}Corresponding author at: ioannis.economou@qatar.tamu.edu

	OPLS-AA ¹ L-OPLS ²			TraPPE-UA³
(Å)	1	1.529	r_{C-C} (Å)	1.54
$k_{r_{C-C}}$ (kcal mol ⁻¹ Å ⁻²)		536	$\theta_{0_{C-C-C}}$ (deg)	114
r _{ос-н} (Å)		1.09	$k_{\theta_{C-C-C}}$ (kcal mol ⁻¹ rad ⁻²)	124.2
$k_{r_{C-H}}$ (kcal mol ⁻¹ Å ⁻²)	680	-	$\theta_{0_{C-C-H}}$ (deg)	114
$\theta_{0_{C-C-C}} (\text{deg})$	1	12.7	$k_{\theta_{C-C-H}}$ (kcal mol ⁻¹ rad ⁻²)	124.2
$k_{\theta_{C-C-C}}$ (kcal mol ⁻¹ rad ⁻²)	1	116.7	$\theta_{0_{H-C-H}}$ (deg)	114
$\theta_{0_{C-C-H}}$ (deg)	1	10.7	$k_{\theta_{H-C-H}}$ (kcal mol ⁻¹ rad ⁻²)	124.2
$k_{\theta_{C-C-H}}$ (kcal mol ⁻¹ rad ⁻²)		75		$c_0 = 2.007028$
$\theta_{0_{H-C-H}}$ (deg)	107.8 66		$c_n (C - C - C - C)$	$c_1 = -0.705521$
$k_{\theta_{H-C-H}}$ (kcal mol ⁻¹ rad ⁻²)			<i>(kcal mol⁻¹)</i> <i>n</i> -alkanes	$c_2 = 0.271016$
	<i>C</i> ₀ :	= 0.15		$c_3 = -6.290094$
$c_n (\mathrm{H} - \mathrm{C} - \mathrm{C} - \mathrm{X})^{\mathrm{a,b}}$	<i>c</i> ₁ :	= 0.45		$c_0 = 3.107959$
$(kcal \ mol^{-1})$	c	$c_2 = 0$	$c_n (C - C - C - C)$	<i>c</i> ₁ =13.21678
	<i>c</i> ₃	= -0.6	cyclohexane	$c_2 = 13.9364$
	$c_0 = 0.7$	$c_0 = 0.123993$		$c_3 = 0.500717$
$c_n (C - C - C - C)$	<i>c</i> ₁ = -0.35	$c_1 = -0.055017$		$c_0 = 0.785418$
$(kcal mol^{-1})$	$c_2 = 0.05$	$c_2 = 0.2143420$	$c_n \left(C_{CH_y} - C_{CH} - C_{CH_2} - C_{CH_2} \right)^c$	$c_1 = -3.482664$
	$c_3 = -0.4$	$c_3 = -0.356439$	(<i>kcal mol⁻¹</i>) squalane	$c_2 = 0.444535$
$c_{1}(kcal m ol^{-1})$	$\varepsilon_{C_{CH_3}} = \varepsilon_0$	$c_{CH_2} = 0.066$		$c_3 = 3.507553$
$z_{\mathcal{C}}$ (kcut mot)	ε _{CCH}	= 0.076		$c_0 = 2.007004$
s $(kcal m al^{-1})$	$\varepsilon_{C_{CH_3}} = \varepsilon_{C_{CH_3}}$	$\varepsilon_{H_{CH}} = 0.03$	$c_n \left(C_{CH_z} - C_{CH_2} - C_{CH_2} - C_{CH_k} \right)^{\mathrm{d}}$	$c_1 = -5.423026$
	$\varepsilon_{H_{CH_2}} = 0.03 \qquad \varepsilon_{H_{CH_2}} = 0.0263$		squalane	$c_2 = 0.271013$
σ (Å)	$\sigma_{C_{CH_3}} =$	$\sigma_{C_{CH_2}}=3.5$		$c_3 = 6.290018$
<i>O_C</i> (A)	$\sigma_{C_{CH}} = 3.55$		c (keel mol ⁻¹)	$\varepsilon_{CH_3} = 0.195$
	$\sigma_{H_{CH_3}} =$	$\sigma_{H_{CH_2}} = 2.5$	ε (κται ποι)	$\varepsilon_{CH_2} = 0.0914$
	$\sigma_{H_{CL}}$	$_{H} = 2.42$	σ(Å)	$\sigma_{CH_3} = = 3.75$
	$q_{C_{CH_3}} = -0.18$	$q_{C_{CH_3}} = -0.222$	0 (A)	$\sigma_{CH_2} = = 3.95$
q_{c} (e)	$q_{C_{CH_2}} = -0.12$	$q_{C_{CH_2}} = -0.148$		
	$q_{C_{CH}} = -0.06$	$q_{C_{CH}} = -0.160$		
<i>q_H</i> (e)	$q_{H} = 0.06$	$q_{H_{CH_3}} = q_{H_{CH_2}} = 0.074$		
		$q_{H_{CH}} = 0.160$		

Table S1. Force field parameters for the hydrocarbons examined in this study.

^aFor all torsions $c_4=c_5=0$. ^bX is either a C or H atom.^cy is either 2 or 3.^dz and k are either 1 or 2.

	TraPPE-UA ⁴
r_{C-O} (Å)	1.16
θ_{O-C-O} (deg)	180
$\varepsilon_{\mathcal{C}} \ (kcal \ mol^{-1})$	0.0537
$\varepsilon_0 \; (kcal \; mol^{-1})$	0.157
σ_{c} (Å)	2.8
σ_0 (Å)	3.05
<i>q_c</i> (e)	0.7
<i>q</i> ₀ (e)	-0.35

Table S2. Force field parameters for TraPPE-UA CO₂.

				TraP	PE		OP	LS		L-OPL	s
	Т (К)	<i>P</i> (MPa)	N _{solvent}	N _{solute}	<i>box size</i> (nm)	N _{solvent}	N _{solute}	<i>box size</i> (nm)	N _{solvent}	N _{solute}	<i>box size</i> (nm)
		1	1000	5	6.024	300	3	4.034	300	3	4.038
	298.15	30	1000	5	5.932	300	3	3.982	300	3	3.988
Je		65	1000	5	5.859	300	3	3.939	300	3	3.940
ar		1	1000	5	6.096	300	3	4.089	300	3	4.100
З	323.15	30	1000	5	5.985	300	3	4.024	300	3	4.030
-he		65	1000	5	5.901	300	3	3.976	300	3	3.976
-u		1	1000	5	6.534	300	3	4.430	300	3	4.467
	423.15	30	1000	5	6.227	300	3	4.217	300	3	4.227
		65	1000	5	5.915	300	3	4.124	300	3	4.126
		1	1000	5	6.900	300	3	4.596	300	3	4.609
	298.15	30	1000	5	6.816	300	3	4.555	300	3	4.569
le		65	1000	5	6.748	300	3	4.512	300	3	4.531
ar		1	1000	5	6.965	300	3	4.645	300	3	4.659
e C	323.15	30	1000	5	6.869	300	3	4.598	300	3	4.609
-de		65	1000	5	6.789	300	3	4.557	300	3	4.567
-u		1	1000	5	7.292	300	3	4.895	300	3	4.898
	423.15	30	1000	5	7.089	300	3	4.780	300	3	4.784
		65	1000	5	6.959	300	3	4.704	300	3	4.708
ä		1	1000	5	7.836	300	3	5.064	300	3	5.274
ne	298.15	30	1000	5	7.770	300	3	5.062	300	3	5.232
ca		65	1000	5	7.710	300	3	5.032	300	3	5.195
ec		1	1000	5	7.894	300	3	5.096	300	3	5.321
ad	323.15	30	1000	5	7.823	300	3	5.078	300	3	5.277
XS		65	1000	5	7.754	300	3	5.060	300	3	5.241
he		1	1000	5	8.154	300	3	5.419	300	3	5.541
-u	423.15	30	1000	5	8.025	300	3	5.247	300	3	5.453
		65	1000	5	7.921	300	3	5.206	300	3	5.384
I		1	1000	5	5.647	300	3	3.787			
le	298.15	30	1000	5	5.585	300	3	3.753			
an		65	1000	5	5.531	300	3	3.722			
Xe		1	1000	5	5.701	300	3	3.835			
h€	323.15	30	1000	5	5.632	300	3	3.793			
		65	1000	5	5.569	300	3	3.755			
λc		1	1000	5	5.992	300	3	4.092			
C	423.15	30	1000	5	5.830	300	3	3.967			
		65	1000	5	5.726	300	3	3.890			

Table S3. Composition and box size lengths for the simulations of diffusion coefficient of CO_2 in the hydrocarbons.

		1	300	3	6.405	300	3	6.343	
	298.15	30	300	3	6.356	300	3	6.310	
Э С		65	300	3	6.310	300	3	6.283	
с С		1	300	3	6.443	300	3	6.395	
J	323.15	30	300	3	6.390	300	3	6.356	
n		65	300	3	6.335	300	3	6.320	
SC		1	300	3	6.616	300	3	6.616	
	423.15	30	300	3	6.527	300	3	6.542	
		65	300	3	6.451	300	3	6.479	

Figure S1. Diffusion coefficient of CO_2 in *n*-hexane (black squares), *n*-decane (red circles) and *n*-hexadecane (green triangles) with TraPPE force field, at 298.15 K and 1 MPa, as a function of (a) the number of solute molecules and (b) the number of solvent molecules. Open symbols correspond to the system sizes used in this study for TraPPE *n*-alkanes.

Figure S2. Percentage average absolute deviation of calculated values for (a) Diffusion coefficient of CO_2 in hydrocarbons, (b) Viscosity and (c) Density of *n*-hexane, *n*-decane, *n*-hexadecane, cyclohexane and squalane from experimental data.

Cadogan et al.⁵ correlated the diffusion coefficient values of CO₂ in the hydrocarbons using the rough-hard-sphere theory. The authors found that the correlation describes the data very accurately within a range of $1.3 < V_m/V_0 < 2.0$, where V_m is the molar volume and V_0 the closed-packed molar volume of the solvent. In a similar fashion to the experimental study, we examined the dependence of CO₂ diffusivity in the various hydrocarbons on the molar volume of the hydrocarbon, obtained by each force field. In Figure S3, $D_{CO_2}T^{-0.5}$ is plotted as a function of the molar volume, V_m , for the three linear hydrocarbons, for all the force fields examined. Linear behavior is observed for the majority of cases ($R^2 \ge 0.98$), in good agreement with the experimental measurements, also shown. In Figure S4, the same correlation is shown for the cases of cyclohexane and squalane. The behavior is very similar to the linear ones.

Figure S3. $D_{CO_2}T^{-0.5}$ of CO₂ in *n*-hexane (left), *n*-decane (middle) and *n*-hexadecane (right) as a function of the molar volume of the solvent. Experimental measurements are from Cadogan et al.⁵

Figure S4. $D_{CO_2}T^{-0.5}$ of CO₂ in cyclohexane (left) and squalane (right) as a function of the molar volume of the solvent. Symbols are the same as in Figure S3. For the case of squalane there are deviations from linearity at lower molar volumes for both force fields, which is consistent with the experimental observations.⁵

References

1. Price, M. L. P.; Ostrovsky, D.; Jorgensen, W. L. Gas-phase and liquid-state properties of esters, nitriles, and nitro compounds with the OPLS-AA force field. *J. Comput. Chem.* **2001**, *22*, 1340-1352.

2. Siu, S. W. I.; Pluhackova, K.; Böckmann, R. A. Optimization of the OPLS-AA force field for long hydrocarbons. *J. Chem. Theory Comput.* **2012**, *8*, 1459-1470.

3. Martin, M. G.; Siepmann, J. I. Transferable potentials for phase equilibria. 1. United-atom description of n-alkanes. *J. Phys. Chem. B* **1998**, *102*, 2569-2577.

4. Potoff, J. J.; Siepmann, J. I. Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide, and nitrogen. *AIChE J.* **2001**, *47*, 1676-1682.

5. Cadogan, S. P.; Mistry, B.; Wong, Y.; Maitland, G. C.; Trusler, J. P. M. Diffusion coefficients of carbon dioxide in eight hydrocarbon liquids at temperatures between (298.15 and 423.15) K at pressures up to 69 MPa. *J. Chem. Eng. Data*, **2016**, *61*, 3922-3932.