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ABSTRACT: Hydrogen is a clean-burning fuel that can be
converted to other forms. of energy without generating any
greenhouse gases. Currently, hydrogen is stored either by
compression to high pressure (>700 bar) or cryogenic cooling to
liquid form (<23 K). Therefore, it is essential to develop safe,
reliable, and energy-efficient storage technology that can store
hydrogen at lower pressures and temperatures. In this work, we
systematically designed 2902 Mg-alkoxide-functionalized covalent-
organic frameworks (COFs) and performed high-throughput (HT)
computational screening for hydrogen storage applications at 111,
231, and 296 K. To accurately model the interaction between Mg-
alkoxide sites and molecular hydrogen, we performed MP2
calculations to compute the hydrogen binding energy for different types of functionalized models, and the data were subsequently
used to fit modified-Morse force field (FF) parameters. Using the developed FF models, we conducted HT grand canonical Monte
Carlo (GCMC) simulations to compute hydrogen uptakes for both original and functionalized COFs. The generated data were
subsequently used to evaluate the materials’ gravimetric and volumetric storage performance at various temperatures (111, 231, and
296 K). Finally, we developed machine learning (ML) models to predict the hydrogen storage performance of functionalized
structures based on the features of the original structures. The developed model showed excellent performance with a mean absolute
error (MAE) of 0.061 wt % and 0.456 g/L for predicting the gravimetric and volumetric deliverable capacities, enabling a quick
evaluation of structures in a hypothetical COF database. The screening results demonstrated that the Mg-alkoxide functionalization
yields greater improvements in volumetric H2 storage capacities for COFs with smaller pores compared to those with larger
(mesoporous) pores.
KEYWORDS: hydrogen storage, metal-alkoxide functionalization, covalent-organic framework, high-throughput screening,
machine learning

1. INTRODUCTION
With increasing awareness of global warming, significant
research efforts focus on transitioning from fossil fuels to
clean, zero-emission hydrogen energy.1,2 Hydrogen (H2) is
considered as a promising alternative due to its high energy
density and environmental benefits. However, efficiently
storing H2 remains a significant challenge. Due to the high
gravimetric and low volumetric energy density of H2 at
ambient conditions, current storage technologies require either
cryogenic temperatures or high pressures.3−5 Cryogenic
storage involves cooling H2 to 20 K, while compressed storage
requires pressurizing the storage tank up to 700 bar, both
demanding substantial energy and specialized equipment. To
address these challenges, H2 storage via physical adsorption on
nanoporous materials, such as metal−organic frameworks
(MOFs) and covalent-organic frameworks (COFs), has been

proposed.6−8 COFs, built from organic monomers linked by
strong covalent bonds, offer high surface areas and pore
volumes, making them attractive for H2 storage.

9 Experimental
and computational studies have proved the outstanding
performance at cryogenic conditions (generally 100 bar for
adsorption and 5 bar for desorption, at 77 or 160 K).10−12

Unfortunately, current adsorbents under near-ambient con-
ditions show limited H2 binding compared to cryogenic
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conditions and fail to meet the U.S. Department of Energy
(DOE) technical targets for H2 storage performance.13

One of the strategies to overcome the limitations of current
adsorbents is by introducing new functional groups to enhance
the H2 binding and improve the adsorption performance of the
adsorbent materials.14−19 Recent research highlights the
effectiveness of introducing open metal sites (OMSs) in
MOFs via metal-alkoxide functionalization for integrating
metal cations into the framework structures.16 These OMSs
provide free coordination sites that interact directly with H2
molecules, enhancing the polarization and binding strength.
Metal-alkoxide functionalization, demonstrated experimentally,
stably incorporates metal cations into MOFs by modifying the
phenol linkers postsynthesis.20 This modification can be
achieved by exchanging one or two alcohol H with a metal
cation using solvent-based methods or atomic layer deposition
(ALD).
Computational screening studies also indicate that Mg-

alkoxide exhibits high heat of adsorption at high pressures
(adsorption pressure) and moderate heat of adsorption at
lower pressures (desorption pressure), making it suitable for
pressure-swing storage.18 Getman et al. built and analyzed
various metal-alkoxide sites, parametrizing the force field based
on ab initio calculated binding energies. Then with the
obtained FF models, H2 loadings of five functionalized MOFs
were calculated using GCMC simulations, showing an
enhancement of up to 1 wt % at ambient temperature, with
Mg-alkoxide catecholate showing the largest heat of adsorption
at high pressure. Chen et al.19 performed high-throughput
(HT) screening of over 2700 Mg-alkoxide-functionalized Zr-
based MOFs for the theoretical maximum H2 capacity,
assuming four H2 molecules bind to one Mg site. Using the
FF models developed in the aforementioned work by Getman
et al., GCMC simulations were conducted to calculate the H2
capacity of the top 100 MOFs from the initial screening,
showing the highest H2 deliverable capacities (DC) of 7 wt %
and 24 g/L at ambient temperature.
When the FF models derived from MP2-calculated H2

binding energies are adopted for GCMC simulations, selecting
the correct FF models is crucial for accurately representing the
adsorption behavior of functionalized materials. In the case of
Mg-alkoxide functionalization on phenyl rings, functional
groups can be added to one side (single-site functionalization)
or both sides (two-site functionalization). Using FF models
developed for single-site functionalization in two-site simu-
lations can lead to inaccuracies, as the binding and adsorption
behavior differs between these two types of functionalization.
Therefore, developing precise and specialized FF models for
each type of functional site is essential for accurately predicting
the adsorption performance of COFs functionalized with Mg-
alkoxide groups. With these tailored FF models, we can predict
the adsorption performance of functionalized COFs, enabling a
computational screening approach to identify high-perform-
ance materials for H2 storage at ambient temperature.
While FF-based simulations could reduce the computational

time for estimating adsorption performances in target porous
materials, computational screening based on molecular
simulations can be integrated with machine learning (ML) to
further speed up the evaluation of material properties. The
potential of using the ML approach to predict various material
properties and performances has been demonstrated to be
highly effective for adsorption applications.21−26 Traditional
feature-based ML approaches use lists of material features

representing the physical and chemical properties of the
structures as inputs, employing linear, tree-based, or simple
neural network algorithms to predict material performance,
such as hydrogen storage capabilities.27−30 More recent
research reports directly use atom and bond information on
the structure itself as features. Advanced approaches, such as
crystal graph convolutional neural networks (CGCNNs), can
directly predict properties such as band gaps, energy,31,32

partial atomic charges,33 and adsorption uptakes39 from input
crystal structures. Especially, Table S1 lists several recent
studies25,34,35 on the ML prediction of H2 adsorption on
COFs.
In this work, we developed specialized FF models for

different types of Mg-alkoxide functionalization and estimated
the H2 adsorption performances of the functionalized COFs,
which lack abundant OMSs that enable efficient adsorption
within framework structures such as MOFs, using GCMC
simulations with the specific FF models. HT screening was
performed on the COF database to identify high-performance
materials at near-ambient temperatures. Pressure-swing DC
was estimated at both cryogenic and ambient temperatures.
Based on this large data set of H2 uptakes corresponding to
various structures with diverse properties and adsorption
performances, ML models were trained to predict H2 uptake at
different temperatures and pressures. Two different types of
ML algorithms, including traditional tree-based gradient-
boosting regression (GBR) and more recent CGCNN, were
adopted. Through the SHAP (SHapley Additive exPlanations)
analysis,36 the contributions of different features to the H2
gravimetric and volumetric uptakes predictions were inves-
tigated, providing detailed insight into the relationship
between structural properties and H2 storage performance.
Furthermore, the incorporation of the GBR models enabled
larger-scale HT screening of over 90,000 materials from the
hypothetical COF database ReDD-COFFEE, expanding our
understanding of how Mg-alkoxide functionalization impacts
H2 storage efficiency.

2. METHOD
2.1. Electronic Structure Calculations and Para-

metrization of FF Models. The H2 binding energies to
Mg-alkoxide groups in functionalized COFs were estimated by
using Mg-catecholates. Geometry optimizations and single-
point energy calculations of single-site and two-site Mg-
catecholate structures were performed at the MP237−41/6-
311+G**//MP2/6-311+G** level of theory. Various config-
urations of H2 approaching the Mg-alkoxide sites were
constructed to simulate different orientations and distances.18

Single-point calculations were calculated by keeping both H2
and Mg-catecholate molecules rigid along the approach angle.
These calculations were carried out using Gaussian 16
software.42 The H2 binding energy to Mg-catecholate was
calculated as

E E E E( )binding total Mg catecholate H2
= + (1)

where Ebinding is the binding energy, Etotal is the total energy of
the whole H2-catecholate system, EMg‑catecholate is the energy of
Mg-catecholate molecule, and EHd2

is the energy of the H2

molecule.
The energies from MP2 calculations were used to para-

metrize FF models for interactions between H2 and Mg-
alkoxide groups. The nonbonded interaction potentials,
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including van der Waals (vdW) and electrostatic potentials,
were described by modified-Morse/Lennard-Jones and Cou-
lomb potential models. Interaction energies of six different H2-
catecholate configurations (150 data points) were fitted to
these models as follows:

U r U r U r U r( ) ( ) ( ) ( )ij ij ij ijforcefield LJ mod Morse Coulomb= + +
(2.1)

U r
r r
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i j

ij
Coulomb

0
=

(2.4)

where Uij is the interaction energy between atoms i and j and rij
is the distance between atoms i and j. kB is the Boltzmann
constant and ε0 is the vacuum permittivity constant. εij and σij
are the LJ parameters representing the LJ well-depth and the
distance at which the particle−particle potential energy is zero
(also refers to the diameter of the atom), respectively. Dij, αij,
and rij* are the modified-Morse parameters representing the
well-depth, well-width, and equilibrium bond distance,
respectively. qi and qj represent the partial atomic charges of
different atoms.
For the vdW interactions, the modified-Morse model was

adopted to describe the interactions between H atoms in H2
adsorbates and Mg, O, and the nearest-neighbor C atoms in
the Mg-alkoxide group. For the interactions between H atoms

Figure 1. Overall flowchart of (a) construction of different sets of H2-Mg-alkoxide-functionalized catecholate configurations and FF
parametrization based on the MP2-calculated interaction energies. (b) Obtaining COF structures from CURATED-COF database and constructing
functionalized structures with different functionalization types and ratios, and high-throughput screening on both original and functionalized COFs
for high H2 deliverable capacity at various temperatures using GCMC simulations with specified FF models developed in (a). (c) Different ML
processes of predicting the H2 uptakes of COFs at certain temperature and pressure points based on the original structures with feature-based ML
approach (upper) and CGCNN (lower).
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in H2 adsorbates and the other atoms in the framework, the LJ
parameters from DREIDING43 and Universal Force Field
(UFF)44 were applied. The Feynman−Hibbs (FH) correction
was used on the LJ potential in H2 simulations to account for
the non-negligible nuclear quantum effects of H2 molecules at
cryogenic temperatures:

U r
k T

U r( )
24

( )ij ijFH

2

B

2
LJ=

(3)

where μ is the reduced mass, kB is the Boltzmann constant, T is
the temperature, ℏ is the reduced Planck’s constant.
For electrostatic interactions, only interactions between H

atoms in H2 adsorbates and atoms in the Mg-alkoxide group
were considered, with partial atomic charges estimated using
MP2 calculations, as described in works by Getman et al.18

Charges on other framework atoms were neglected for the
functionalized structures. H2 molecules were modeled using
the rigid 3-site Darkrim−Levesque model,45 with two H atoms
carrying a positive charge of 0.468 and a center-of-mass
(COM) pseudoatom carrying a negative charge of −0.936.
A dual annealing approach46 globally minimized the root-

mean-squared error (RMSE) between H2 binding energies
calculated from MP2 and FF models across all data points,
determining the modified-Morse parameters. The workflow for
FF development based on MP2-calculated binding energies is
shown in Figure 1a. Additional details on the metrics,
parametrization procedure, and FF model parameters are
provided in Sections S2 and S3.
2.2. Molecular Model Construction. We obtained 807

geometry-optimized COFs from the CURATED-COF47,48

database and constructed 2,095 functionalized COFs by
introducing different types (single-site and two-site) and ratios
(50 and 100%) of functionalization to the original structures.
The functionalization of the structures was implemented by
adding the Mg-alkoxide group to the original linkers, as shown
in Figure 1a. The geometry of the Mg-alkoxide groups was
kept consistent with the optimized Mg-catecholates, and no
overall geometry optimization was performed on the structures
after functionalization. The Python package MOFUN49 and
the Julia package PoreMatMod50 were used to perform the
modifications on the molecular structures.
The textural properties of the COFs, including pore-limiting

diameter (PLD), largest cavity diameter (LCD), void fraction
(VF), accessible volumetric surface area (ASA), and density,
were computed based on the analysis of the Voronoi network,
as implemented in the Zeo++3.0 software.51−53 The accessible
pore volume and surface area were calculated using the probe
radius of 1.84 Å, the kinetic radius of nitrogen.54 Structures
with a PLD smaller than the diameter of H2 adsorbate (2.958
Å) were excluded from the data set. The detailed number of
each type of original and functionalized COF structure in the
data set is shown in Figure 1b.
2.3. Grand Canonical Monte Carlo Simulation. All

GCMC simulations were performed for 6000 equilibration
cycles followed by 10,000 production cycles with equal
probabilities for translation, reinsertion, rotation, and swap
moves in each MC step, as implemented in the open-source
RASPA 2.055 software. The nonbonded interaction potential
between the atoms in COFs and H2 adsorbates was described
by the aforementioned modified-Morse/Lennard−Jones plus
Coulomb FF model. The Lorentz−Berthelot mixing rules56

were applied for the LJ parameters. The vdW interaction cutoff

was set to 12.8 Å, and an analytic tail correction was applied
beyond the cutoffs. The long-range electrostatic interactions
were computed using the Ewald summation method, as
implemented in the RASPA 2.0 software. The real-space
interactions were truncated at a cutoff distance of 12 Å, while
the reciprocal-space contribution was handled using the Ewald
summation approach. For original COF structures, the partial
atomic charge information was estimated by density-derived
electrostatic and chemical (DDEC6) method,57−60 as included
in the crystal definition files provided by the CURATED-COF
database. For the functionalized COF structures, only the
partial atomic charges on the Mg and O atoms in the Mg-
alkoxide functional sites were considered, as listed in Table S3,
while the partial atomic charges on all other framework atoms
were set to zero. Validations of the impact of different
framework charge settings on the final GCMC simulation
results are provided in Section S6.
GCMC simulations were conducted at temperatures of 111,

231, 296 K and pressures of 5, 100 bar. The pressure-swing DC
was defined as the difference between the uptakes at the
adsorption and desorption pressures of 100 and 5 bar,
respectively, at each temperature. The definition can be
represented as follows:

N NDC 100bar 5bar= (4)

where Nx represents uptake at a certain pressure x.
2.4. Machine Learning. Machine learning (ML) models

were trained to predict the H2 uptakes at different temper-
atures and pressures for both original and functionalized COFs
from the original COF structures and to enable the prediction
of the pressure-swing DCs (100 → 5 bar) at various
temperatures. We employed both simple tree-based ML
models, such as decision tree (DT), gradient-boosting
regression (GBR), and random forest (RF), and a more
recent deep learning model, the CGCNN model developed by
Cao et al.31 derived from the original model by Xie et al.,61 for
the training process. The schematic shown in Figure 1c
describes the training processes of these two different types of
ML models. The data set was split in the ratio of 8:2 for the
ML model training and testing, respectively. The distributions
of the features and targets in the training and test sets are
shown in Figure S16.
For the tree-based ML models, the input features included

textural properties from the original structures, functionaliza-
tion type (single-site or two-site), ratio of functionalization (50
or 100%), temperature, and pressure. For the CGCNN, atomic
and bond information served as an input. Node and edge
features, including atomic numbers and distances to near-
neighbor atoms, were encoded and sent into the convolutional
and hidden layers. Any structures that the code failed to
convert to feature symbols were excluded. The target for
traditional ML models was the H2 uptake at specific
temperatures and pressures; for the CGCNN, the target was
a list of 30 uptake values for the original, 50%, and 100%
single-site and two-site functionalized structures at two
different pressure and three temperature points.
The 5-fold cross-validation was performed in the training

process of tree-based ML models to avoid overfitting by
holding out parts of the training set as a validation set. The
hyperparameter tuning was carried out with Bayesian
optimization based on Gaussian Processes, with the goal of
minimizing the mean squared error (MSE) of the model in the
loops and finding the optimal parameters. For the training
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process of CGCNN, one-fourth of the training set was selected
to be the validation set (overall train:valid:test = 6:2:2) and
MSE is the metric used in forward propagation during model
training and Stochastic Gradient Descent (SGD) was used for
the weights and bias finetuning. The 5-fold cross-validation
was implemented on Python using the scikit-learn62 library and
the hyperparameter tuning was performed using the scikit-
optimize library. The data preparation and model training for
the CGCNN were performed using the Python packages
pymatgen63 and PyTorch.64

3. RESULTS AND DISCUSSION
3.1. H2-Catecholate Interaction Energies and FF

Parametrization. The H2 binding energies to the Mg-

alkoxide groups in the functionalized COFs were estimated by
calculating the interaction energies with the Mg-catecholate
models. Figure 2a illustrates the introduction of single- and
two-site Mg-alkoxide groups on the phenyl rings and ligands in
the frameworks. The interaction energies for six different H2-
catecholate configurations are shown in Figure 2b. All
configurations followed a similar trend with very high positive
interaction energies at small distances, distinct minima at
intermediate distances, and energies approaching zero as the
distance increases. The variations between the single-site and
two-site models reflected differences in binding energies due to
the different types of functionalization of the phenyl moiety.
The H2 binding energies for single-site Mg-catecholate were
slightly lower than those for two-site models, though the Mg−

Figure 2. (a) Construction of single- and two-site functionalization with Mg-alkoxide groups on the original catecholate and phenyl rings on the
linker in a framework structure. (b) H2-catecholate interaction energies were calculated with the modified-Morse/Lennard-Jones plus Coulomb
potential (lines) compared with energies calculated by MP2/6-311+G** (circles). The energies were calculated from different H2-catecholate
configurations, as shown by the atomic models in each plot. (c) Comparison of the H2-catecholate interaction energies calculated by the force field
(FF) and MP2.
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H2 distances at the lowest energy were similar in both cases.
For instance, in the type 1 configuration, the single-site model’s
energy was approximately 2 kJ/mol lower than the two-site
model. In both cases, the interaction energies reached −20 kJ/
mol when the Mg−H2 distance was approximately 2.2 Å.
Two different sets of modified-Morse model parameters

were obtained by fitting to the MP2 energies of the single-site
and two-site models, respectively, named FF1 and FF2. The
obtained FF parameters and overall fitting RMSE are shown in
Table 1. A comparison between the energies estimated by the

FF models and MP2 calculations is shown in Figure 2b. The
good agreements indicated that the FF models could
accurately reproduce the interaction energies of different H2-
catecholate configurations, with overall fitting RMSE of 0.508

and 0.412 kJ/mol for single-site and two-site cases,
respectively.
The comparison between the H2 binding energies of

different functionalized models indicated that, compared to
adding Mg sites to both sides of a phenyl ring, the single-site
functionalized structure, where the Mg site was only added to
one side of each phenyl ring, enabled stronger binding with the
H2 on each Mg site. Since the LJ parameters and partial
charges were not specified for different types of functionaliza-
tion, the differences in the H2 binding energies to the Mg sites
were reflected in the parameters of the specific modified-Morse
models FF1 and FF2. The parameter D for the interaction
between H_h2 and Mg_cat was shown to be higher for FF1,
leading to a deeper potential well with stronger binding at the
optimal position. The good agreement with the MP2 energy
results demonstrated the flexibility of the modified-Morse
potential model in accurately describing the more realistic
anharmonic interaction potential. The detailed fitting RMSEs
for each configuration are shown in Figure S3.
3.2. High-Throughput Screening of Mg-Alkoxide

Functionalized COFs. 3.2.1. Simulations of Two-Site
Functionalized COFs with Different FF Models. To verify
the necessity of using specific FF models for different
functionalized structures and understand their impact on
simulation results, H2 uptakes of 886 two-site functionalized
COF structures at various temperatures and pressures were
calculated using GCMC simulations with FF1 and FF2 models.
The pressure-swing DCs between 100 and 5 bar at each
temperature were also determined. The DC results are shown
in Figure 3 and detailed uptakes at adsorption and desorption
pressures are shown in Figure S8.

Table 1. Modified-Morse Parameters Fitted from the MP2-
Calculated Interaction Energy

FF1 overall fitting RMSE = 0.508 kJ/mol

atom 1 atom 2 D α r*
H_h2a Mg_cat 910.197 2.027 2.242
H_h2 C_cat 28.629 1.490 3.825
H_h2 O_cat 1.0 0.931 6.335

FF2 overall fitting RMSE = 0.412 kJ/mol

atom 1 atom 2 D α r*
H_h2 Mg_cat 801.051 2.054 2.257
H_h2 C_cat 30.059 1.515 3.778
H_h2 O_cat 1.0 0.912 6.399

a_h2: atoms in the H2 adsorbate; _cat: atoms in Mg-alkoxide group in
the catecholate.

Figure 3. Comparison of (a) gravimetric and (b) volumetric hydrogen deliverable capacity (DC) of two-site functionalized structures calculated
using FF1 and FF2 for the three different temperatures. The dashed lines in the subplots with the equations in the lower right corner show the
results of the linear regression of the data points.
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Figure 4. Comparison of gravimetric and volumetric DC for single-site (upper subplots, 111 K (a); 231 K (b); 296 K (c)) and two-sites (lower
subplots,111 K (d); 231 K (e); 296 K (f)) functionalized groups at three different temperatures. The scatters were colored according to original
structures in gray, 50% functionalized in blue, and 100% functionalized in red. The dashed and dotted lines represent the 2020 and 2025 target
standards based on the DOE Technical Targets for Hydrogen Storage13 shown in Table S6. The solid lines represent the maximum values of the
gravimetric and volumetric DC for each data set, colored according to the scatters.

Figure 5. Comparison of the (a) gravimetric and (b) volumetric DC after functionalization (single-site: blue, two-sites: red) compared to the
original structures at three different temperatures.
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Due to the stronger H2 binding with Mg sites in the single-
site functionalized structures, FF1 generally overestimated H2
uptakes compared to FF2. This overestimation was more
pronounced at 5 bar than at 100 bar, especially in volumetric
uptakes, where the largest deviation reached approximately 5
g/L. At cryogenic temperatures and high pressures, uptakes
were near saturation and limited by pore volume, reducing the
overestimation by FF1. At ambient temperatures, high-pressure
uptakes were not significantly limited by saturation, leading to
a greater overestimation by inaccurate FF models.
Consequently, the gravimetric DCs showed no significant

difference between FF1 and FF2 across all temperatures due to
minor differences in gravimetric H2 uptakes at adsorption and
desorption pressures. Volumetric DCs calculated with FF1
could be overestimated by up to 30% at 296 K, while showing
negligible differences at 111 K. This clearly showed that
incorrect FF models could cause significant deviations in
volumetric DCs at ambient temperatures, emphasizing the
importance of using accurate FFs for reliable adsorption
performance predictions, particularly at ambient conditions.
3.2.2. Simulations of Original and Functionalized COFs

with Specific FFs. High-throughput (HT) GCMC simulations
were performed on 2902 structures, including original and
functionalized COFs, using the specific FF models as discussed
in Section 2. H2 uptakes at three temperatures (111, 231, 296
K) and two pressures (5, 100 bar) were calculated, and the
pressure-swing DCs were then determined. Figure 4 shows the
gravimetric and volumetric DCs for the original and function-
alized COFs at three different temperatures. The comparison
between the original and functionalized structures is illustrated
in Figure 5, and the enhancement of DCs (ΔDC) due to
functionalization is presented in Figure 6.
At 111 K, original structures showed gravimetric and

volumetric DCs higher than those of functionalized ones.
The top original structures displayed a volcano-like distribu-
tion with a peak gravimetric DC around 17 wt % and a
volumetric DC around 28.85 g/L. With a few exceptions,
functionalization generally led to a decrease in both gravimetric
and volumetric DCs. For instance, while the maximum
volumetric DC for original structures was slightly higher than
for functionalized ones, the maximum gravimetric DC shows a
significant drop postfunctionalization. This indicated that at
cryogenic temperatures, original materials performed better in
terms of H2 storage capacity and functionalization did not
significantly enhance the DC.
At ambient temperatures (231 and 296 K), the trends

shifted from the cryogenic condition. For instance, at 296 K,
original structures had gravimetric DCs mostly below 3 wt %
and volumetric DCs mostly below 6 g/L, with maximum values

of 6.28 and 7.76 g/L, respectively. Functionalized structures
consistently showed reduced gravimetric DCs but increased
volumetric DCs. The top functionalized structures out-
performed the original ones in terms of volumetric DC, with
enhancements ranging up to 6.69 g/L. Conversely, gravimetric
DC generally exhibited only slight variations, though in some
cases, reductions of up to −2 wt % were observed. This
indicated that at ambient temperatures functionalized
structures showed better volumetric DC performance, though
gravimetric DCs were not significantly impacted.
In conclusion, while functionalization did not improve H2

storage performance at cryogenic temperature and even
reduced gravimetric storage at ambient temperatures, it
significantly enhanced volumetric storage at ambient con-
ditions. The key challenge remained to identify conditions
under which volumetric DC can be increased without
substantially compromising gravimetric DC, thereby optimiz-
ing the overall storage performance.
3.3. H2 Adsorption Isotherms of Original and

Functionalized COFs. To gain better insight into how
functionalization types affect H2 adsorption behavior, two
COF structures were selected from the CURATED-COF
database: 21320N2, with a channel-like shape, and 07010N3,
with a more complex porous structure. These structures,
originally named VCOF-PyrBpy65 and COF-102,66 respec-
tively, exhibit differences in their textural properties as shown
in Table S7. Specifically, 07010N3 has higher ASA, VF, and
more potential functional sites compared with 21320N2,
resulting in significant variations in performance before and
after functionalization.
H2 adsorption isotherms of the original and functionalized

structures were calculated using specific FF models, and the
results are shown in Figures S14 and S15. Introducing heavier
O and Mg atoms increased density and decreased gravimetric
uptakes of H2 and DC after functionalization, while volumetric
uptakes better reflected the absolute amount of adsorbate since
the cell volume remained unchanged.
For the structure 21320N2, adding more Mg sites did not

significantly change volumetric uptake but led to continuous
decreases in the gravimetric uptake of H2 at both cryogenic
and ambient temperatures. This lack of significant improve-
ment in volumetric DC and the decrease in gravimetric DC
was due to the limited functionalization sites, resulting in a
minimal enhancement in H2 binding and adsorption capacity.
In contrast, 07010N3 showed increased volumetric uptakes at
ambient temperature with more Mg sites. Although at low
temperatures and low-pressure adsorption condition, the
adsorption saturation limited uptake increases for highly
functionalized structures, leading to decreased DC. At ambient

Figure 6. Violin plots showing the distributions of the enhancement of (a) gravimetric and (b) volumetric DC (ΔDC) after functionalization
(single-site: blue, two-sites: red) compared to the original structures at three different temperatures.
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Figure 7. Gravimetric and volumetric H2 (a) uptakes and (b) deliverable capacity (DC) obtained by GCMC simulations and predicted by GBR
models. The figures include data from both original and functionalized structures at 3 temperatures. All data points shown in the plots are from the
test set.

Figure 8. (a) Mean absolute SHAP values and (b) SHAP values of the GBR models with the gravimetric (left, GBR_g) and volumetric (right,
GBR_v) H2 uptake as the target, respectively. In the feature list, func_type stands for the functionalization type, i.e., original (0), single-site (1), or
two-site (2); func_ratio stands for the functionalization ratio, i.e., 0% (original), 50%, and 100%. The color bar in (b) represents the value of each
feature, from high (magenta) to low (cyan).
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temperatures, where adsorption did not reach saturation,
uptakes at higher pressure were not limited by pore volume,
resulting in increased volumetric DC after functionalization.
Furthermore, upon the comparison of 100% single-site and

50% two-site functionalization on the same structure, both
configurations introduced the same number of Mg-alkoxide
groups. Due to different binding strengths, 100% single-site
functionalized structures (i.e., 07010N3_single_all) showed
slightly higher uptakes than 50% two-site functionalized
structures (i.e., 07010N3_two_half). This difference was
more pronounced for 07010N3, where at 296 K, the
volumetric DC of 07010N3_single_all exceeded that of
07010N3_two_half by approximately 1.5 g/L.
These observations highlighted how specific structural

characteristics and functionalization strategies impact H2
adsorption performance. While 21320N2 showed limited
improvement, 07010N3 demonstrated a notable increase in
volumetric DC at ambient temperatures, illustrating the effects
of functionalization on different COF structures and providing
detailed insights beyond the overall analysis.
3.4. ML Model for Predicting Deliverable Capacity of

Functionalized COFs. 3.4.1. Gradient-Boosting Regression.
Among the three tree-based ML algorithms selected, namely,
GBR, RF, and DT�the GBR models demonstrated the
highest prediction accuracy for both gravimetric and
volumetric uptakes. Consequently, this section will focus on
the GBR models, with results from the other algorithms
provided in Section S8. The optimal sets of hyperparameters
for the GBR models are shown in Table S9.
The GBR models accurately predicted H2 uptakes with R2

values of 0.995 and 0.994 for GBR_g and GBR_v models,
respectively. This is illustrated in Figure 7a, where GBR-
predicted uptakes closely matched GCMC-calculated values,
exhibiting acceptable errors. The pressure-swing DC between
100 and 5 bar, calculated from the ML-predicted uptakes, also

aligned well with GCMC simulation results, as shown in Figure
7b. The good agreements and low MAE and RMSE values
demonstrated that the GBR models can reliably predict
pressure-swing DCs based on textural properties, functional-
ization type and ratio, temperature, and pressure.
The analysis of the SHAP values in Figure 8 highlights the

importance of various features in the GBR models. For
gravimetric uptake, pressure and temperature were identified as
the most influential features, followed by functionalization
type, void fraction (VF), and density. The SHAP value plot
further confirmed that higher pressure and lower temperature
positively influenced H2 uptake with functionalization
parameters also playing significant roles. Similarly, for
volumetric uptake, pressure and temperature again dominated,
with significant contributions from functionalization type and
ratio and VF. These insights emphasized the necessity of
optimizing pressure and temperature conditions, along with
appropriate functionalization strategies, to enhance H2 storage
performance.
The inclusion of temperature and pressure as input features

allowed the ML models to predict DC under various
conditions, such as pressure-swing, temperature-swing, and
combined pressure−temperature-swing scenarios. This capa-
bility enabled predictions of DC across a wide range of
operating conditions, from 111 K, 100 bar to 296 K, 5 bar,
facilitating comprehensive high-throughput screening of
materials. Although minor numerical inaccuracies may exist,
the GBR models offer valuable guidance for identifying high-
performance materials and selecting the top candidates for H2
storage applications.
3.4.2. Crystal Graph Convolutional Neural Network. In

addition to the feature-based ML models, CGCNN models
were trained to predict H2 uptakes using only the crystal
structure definition file as an input. Unlike the GBR models,
which can predict uptake under specific conditions by

Figure 9. Gravimetric and volumetric H2 (a) uptakes and (b) deliverable capacity (DC) obtained by GCMC simulations and predicted by
CGCNN models. The figures include data from both original and functionalized structures at 3 temperatures. All data points shown in the plots are
from the test set.
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providing additional inputs, the CGCNN models generally do
not allow for the inclusion of other inputs. Instead, in this
work, the CGCNN models predicted a list of 30 values,
representing the uptakes of original and functionalized
structures with various functionalization types and ratios at
three different temperatures and two pressure points. Two
separate CGCNN models were developed for predicting
gravimetric and volumetric uptakes, named CGCNN_g and
CGCNN_v, respectively.
The performance of the CGCNN models, as shown in

Figure 9, was lower than that of the GBR models, with lower
R2 values and higher MAE and RMSE metrics. For gravimetric
H2 uptake, the CGCNN model achieved an R2 of 0.894, an
MAE of 0.203 wt %, and an RMSE of 0.427 wt %. For
volumetric uptake, it showed an R2 of 0.912, an MAE of 1.344
g/L, and an RMSE of 2.585 g/L. The errors of the CGCNN
predictions were nearly 3 times those of the GBR predictions.
This discrepancy was even more pronounced when calculating
the DC values from the CGCNN-predicted uptakes, resulting

in lower R2 values and significant deviations in MAE and
RMSE.
The CGCNN models tended to overestimate volumetric

uptakes for materials expected to have negligible adsorption.
This overestimation was evident in the vertical clustering of
data points near the origin for volumetric uptake, and DC
predictions are shown in Figure 9. Efforts to exclude materials
with low volumetric uptakes from the data sets proved
challenging, as each target array included at least one low
uptake value (<1 g/L), particularly at low pressures. This
resulted in no data being available for training unless we
excluded data at high temperatures like 296 K or included
temperature and pressure as part of the inputs, as done for
GBR model training.
The less accurate performance of the CGCNN models could

be attributed to their reliance on mostly local features, such as
atomic number and interatomic distance, without incorporat-
ing global structural features such as pore size, pore volume,
density, and surface area. These global features are more

Figure 10. Gravimetric and volumetric DCs for (a) original structures from CURATED-COF database, (b) original and (c) functionalized
structures from ReDD-COFFEE database at three different temperatures. Colors of the hexagonal bins represent the number of data points, as
shown in the color bars. The dashed and dotted lines represent the 2020 and 2025 DOE targets. The solid lines represent the maximum values of
the gravimetric and volumetric DC for each data set.
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related to the overall adsorption performance and crucial for
accurately predicting adsorption uptakes. Previous studies,
such as MOFormer,31 MOF-CGCNN,67 etc., have shown that
combining local and global features can enhance prediction
accuracy for various properties, suggesting a potential path for
improving CGCNN models. However, in our study, feature-
based ML models, such as GBR, have already provided high
accuracy using global textural properties and operational
conditions.
In conclusion, while CGCNN models offer a novel approach

by utilizing crystal structure definition files alone, their
prediction accuracy for H2 storage performance is currently
limited compared to traditional feature-based ML models. The
analysis underscored the importance of including global
structural features to enhance prediction accuracy. Therefore,
feature-based models remained more reliable for predicting the
H2 uptake and DC of functionalized COFs, providing valuable
insights for the high-throughput screening and selection of top-
performing materials.
3.5. Screening of Hypothetical COF Structures Using

an ML Model. To further investigate the H2 adsorption
performance of various COFs before and after Mg-alkoxide
functionalization, we used the GBR model developed in this
work to quickly evaluate the performance of the hypothetical
COFs from ReDD-COFFEE68 database (DB). First, we
identified 95,860 structures containing phenyl rings, excluding
materials without the potential functionalization site from the
original ReDD-COFFEE DB. Several key textural properties,
such as PLD, LCD, surface area, void fraction, and density,
were extracted from the ReDD-COFFEE DB and organized as
input features for the GBR predictions. Figure 10 shows the
ML model predicted H2 pressure-swing DCs at various
temperatures, both before and after functionalization.
The screening results show trends consistent with those

observed in the CURATED-COF DB. At near cryogenic
temperatures (111 K), both gravimetric and volumetric DCs
decreased after functionalization. However, at higher temper-
atures (231 and 296 K), functionalization led to improvements
in volumetric DCs for some materials. Some of the original and
functionalized COF structures from the ReDD-COFFEE DB
could meet gravimetric targets at ambient temperatures but not
the volumetric targets. Additionally, functionalization did not
significantly enhance volumetric DCs in this data set. When
comparing with the CURATED-COF database, unfunctional-
ized materials from the ReDD-COFFEE DB exhibited
relatively lower volumetric DCs at 231 and 296 K.
Notably, more COFs from the ReDD-COFFEE DB

demonstrated higher gravimetric DCs, as represented by the
light-yellow regions in Figure 10b,c. This contrasted with
CURATED-COF, where most data points were concentrated
in regions with lower gravimetric and volumetric DCs, and
only a few materials showed strong performance with high
DCs. This difference could be attributed to the distinct
structural characteristics of COFs in the ReDD-COFFEE
database, which generally feature larger pores and larger void
fractions. As highlighted in previous studies and demonstrated
by our comparison of structures 21320N2 and 07010N3, H2
adsorption improvements tended to be more pronounced in
materials with smaller pores, like 07010N3. In contrast, the
larger pores and higher void fractions in many COFs from the
ReDD-COFFEE DB resulted in lower volumetric H2
adsorption performance with limited improvement following
Mg-alkoxide functionalization.

It is important to acknowledge that the GBR model was
trained using adsorption data obtained from the structures
reported in the CURATED-COF DB, which might not fully
capture the range of properties found in the ReDD-COFFEE
DB, as shown in Figure S24. This limitation could lead to
inaccuracies in the predictions for certain structures in ReDD-
COFFEE. Moving forward, incorporating models that better
learn from a broader range of features or expanding the
training data set with more diverse materials could improve the
predictive accuracy of H2 storage performance.

4. CONCLUSIONS
In this work, we investigated Mg-alkoxide-functionalized COF
structures for H2 pressure-swing storage applications. H2
binding energies were estimated using MP2-calculated
interaction energies with Mg-catecholates and specialized FF
models were developed for GCMC simulations. HT screening
on the CURATED-COF database using these FF models
shows that Mg-alkoxide functionalization does not enhance H2
storage at 111 K but improves the performance at 231 and 296
K, particularly for volumetric capacity. The enhancement at
higher temperatures is more pronounced in materials with
smaller pores, where Mg-alkoxide functionalization signifi-
cantly boosts the volumetric H2 storage performance. Using
the developed ML model, we screened hypothetical COF
structures from ReDD-COFFEE database. The additional
screening further confirmed that the Mg-alkoxide functional-
ization yields greater improvements in volumetric H2 storage
capacities for COFs with smaller pores compared with those
with larger (mesoporous) pores. This conclusion provides
valuable material design guidelines for improving the
volumetric H2 storage capacity under ambient conditions.
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