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ABSTRACT
In this paper, we review recent advances in the Continuous Fractional Component Monte Carlo (CFCMC)
methodology and present a historic overview of the most important developments that have led to this
method. The CFCMC method has gained attention for Monte Carlo simulations of adsorption at high
loading, and phase and reaction equilibria of dense systems. It has recently been extended to reactive
systems. The main features of the CFCMC method are: (1) Increased molecule exchange efficiency
between different phases in single and multicomponent (reactive) systems, which improves the
efficiency and accuracy of phase equilibria simulations at high densities; (2) Direct calculation of the
chemical potential from a single simulation; (3) Direct calculation of partial molar properties from a
single simulation. The developed simulation techniques are incorporated in the open-source molecular
simulation software Brick-CFCMC.
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1. Introduction

Process design in chemical industry requires knowledge of
phase equilibria [1,2]. Accurate thermodynamic models are
therefore desired for phase equilibria calculations, especially
at high pressure [3]. Design of chemical processes at high press-
ures corresponds to high densities which make more efficient
use of the available volume. Examples of such processes are:
enhanced oil recovery [4], carbon capture and storage [5],
heat-pump cycles [6], the Haber-Bosch process [7], hydrogen
compression for transportation and storage [8, 9], etc. [10].
This highlights the importance of performing experiments
and modelling of phase equilibria at high pressures to better
understand the physics of such processes [11]. However,
obtaining accurate phase equilibrium data at high pressures is
challenging [11–14]. Performing high-pressure experiments
can be hindered due to available technologies, safety, costs,
material limitations, etc. [15]. An overview of experimental
methods for high-pressure phase equilibria measurements
can be found in Refs. [10–14].

In the past decades, advances in computational science have
provided possibilities to combine experiments and thermodyn-
amic modelling to develop both descriptive tools and predictive
capabilities relevant to processes in the chemical industry [16].
Thermodynamic models used in chemical industry are either
fitted to experimental data, empirical, or generic without any
fitted interaction parameters [13, 17]. Accurate thermodynamic
models are valuable as they can potentially reduce the number
of required experimental data points for process design and
optimisation [18, 19]. Commonly used thermodynamic models
in industry are cubic type Equations of State (EoS) due to low
computational costs and simplicity [17, 20–23]. However, it is

well-known that cubic type EoS e.g. generic Peng-Robinson
(PR) PR EoS [24] or Soave Redlich-Kwong (SRK) EoS [25]
often fail to describe phase equilibria of mixtures at high den-
sities or involving polar components [1, 17, 26, 27]. For
instance, over 200 different mixing rules for Peng-Robinson
EoS were reported for mixtures [18]. This indicates that classi-
cal treatment of complex systems is not always sufficient for the
analysis and design of chemical processes [28, 29]. The demand
for accurate phase equilibria calculations has drawn attention
of researchers and industrial partners to more advanced and
physically-based methods such as SAFT-type EoS [23, 30–32]
and molecular simulation [28, 29]. The advantages of using
such models are improved accuracy of phase equilibria calcu-
lations and molecular insight into the physics of chemical pro-
cesses. This molecular insight often complements observations
from experiments [28, 29]. In molecular simulation, phase
equilibria calculations are mainly performed using the Monte
Carlo method, based on the knowledge of the interactions
between the molecules in the system [28]. The results from
Monte Carlo simulations are stochastic by nature, however,
with sufficient sampling, thermodynamically consistent results
are expected. The Gibbs Ensemble [33], the grand-canonical
ensemble [34, 35], and the osmotic ensemble [28] are most
commonly used for phase equilibria calculations using Monte
Carlo simulations. The Gibbs ensemble, proposed by Panagio-
topoulos in the 80s of the previous century [33, 36] is an
efficient way to perform phase equilibria calculations for sys-
tems with low or moderate densities, with small finite-size
effects (provided that the system is not too close to the critical
point) [37, 38]. In this ensemble, two simulation boxes are con-
sidered that can exchange energy, volume and molecules, in
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such a way that the two boxes contain the coexisting phases. To
reach chemical equilibrium between the phases, the following
conditions are required: equal pressures, equal chemical poten-
tials for each component and equal temperatures. By imposing
equal chemical potentials, the number of molecules in each
phase is allowed to change. This means having that sufficient
molecule exchanges between the phases is essential to have
phase equilibrium.

Due to significant advances in computational sciences since
the early 1950s [39–41], phase equilibria of complex systems
have been investigated ever since [37, 42–44]. For complex sys-
tems, it is observed that sufficient exchange of molecules
between two phases is hindered due to low probabilities of
forming cavities in dense phase. In dense systems, the prob-
ability of successful single-step insertions depends on spon-
taneous formation of cavities large enough to accommodate
the molecule. This probability is extremely small if the system
density exceeds a certain threshold [45], rendering single-step
molecule insertions impractical. Also, deleting a molecule in a
single step leaves a cavity in the simulation box with a high
energy penalty for the new configuration. Due to very low
acceptance probabilities of single-step trial insertions/deletions,
such trial moves are not efficient for simulation of dense phases
at coexistence. Also, chemical potentials in each phase need to
be computed to check whether the condition of chemical equi-
librium is met. In sharp contrast to temperature and pressure,
the chemical potential (and its derivatives) cannot be deter-
mined as a function of atomic positions or momenta of a single
configuration [28, 29]. A typical example is the well-known
Widom’s Test Particle Insertion (WTPI) method [28, 29, 46,
47]. At high densities, the potential energy change due to inser-
tion of the test molecule with the rest of the molecules often
becomes very large due to overlaps with other molecules within
the system. These overlaps result in large values for the inter-
action potential leading to a statistical zero Boltzmann factor.
In theory, one could perform a very long simulation during
which spontaneous cavities would occur once in a while, how-
ever this is neither practical nor efficient. In Figure 1(a) single-
step molecule insertions are schematically illustrated. It is
shown that for a dense system, single-step insertions lead to a
large fraction of overlaps. A similar sampling problem of the
chemical potential is observed when deleting a molecule from
a dense phase [28, 29, 46–50]. The reason is that removing a
molecule from a well equilibrated configuration also results
in a large energy penalty [45, 50]. Therefore, other Widom-
like test molecule insertion/removal methods [46–50] also
suffer from similar sampling difficulties. In the past decades,
this has led to efforts to develop different methods to overcome
the problem of insertion or deletion of molecules and sample
the chemical potential. Therefore, specialised simulation tech-
niques are required to both facilitate molecule exchanges
between the phases and compute chemical potentials at phase
coexistence [51–58]. As single-step insertions are not efficient,
it is natural to consider insertions in multiple steps in such a
way that the surrounding of a molecule that is inserted can sim-
ultaneously adapt. This is the central idea that is applied in
expanded-ensembles methods like the recently developed Con-
tinuous Fractional Component Monte Carlo (CFCMC)
method, by the group of Maginn [59, 60]. In the CFCMC

method and expanded ensemble methods in general, inter-
actions of a so-called fractional molecule are scaled with a
coupling parameter λ, in such a way that interactions between
the fractional molecule and the surrounding ‘whole’ molecules
vanish for l = 0, and that those interactions are fully developed
for l = 1. By including Monte Carlo trial moves for sampling
λ, different (expanded) ensembles such as the NPT-, grand-
canonical-, reaction-, and Gibbs ensemble can be simulated.
The CFCMC method has been used recently to study phase
and reaction equilibria of several important systems [42, 61–
64]. The expanded ensembles methodology and in particular
CFCMC, compete with other methods such as Configura-
tional-Bias Monte Carlo (CBMC) [65, 66], Continuum Confi-
gurational Bias (CCB) [67–69], cavity biasing [70] and
energy-biasing [71–73]. However, such methods may not be
efficient at low temperatures since the performance depends
on spontaneous formation of cavities in the system. This
sampling problem can be circumvented in expanded ensembles
by introducing biasing.

In this paper, we review the recent advancements in
CFCMC methodology. Specific applications of the CFCMC
method involve different systems in the Gibbs ensemble, reac-
tion ensemble, and isobaric-isothermal ensemble. In Section 2,
we briefly review the important developments which have led
to the development of the CFCMC method. In Section 3, the
application of the CFCMC method in the Gibbs ensemble is
discussed. In the Gibbs ensemble, the chemical potential of
each phase is directly obtained from a single simulation, by
sampling the probability distribution of λ. The condition of
chemical equilibrium is met when the chemical potential of
both phases are equal. In Section 4, application of the
CFCMC method in the reaction ensemble is reviewed. Similar
to the Gibbs ensemble, the chemical potentials of reaction pro-
ducts and reactants are obtained by sampling probability distri-
bution of λ. Direct computation of partial molar properties
using the CFCMC is described in Section 5. This was used to
compute the reaction enthalpy of the ammonia synthesis reac-
tion for pressures up to P=800 bar. In Section 6, the combi-
nation of the CFCMC method with other methods such as
CBMC and their application to the grand-canonical and osmo-
tic ensembles are reviewed. We have summarised our con-
clusions in Section 7. The algorithms presented in this
manuscript have been incorporated in our open-source
molecular simulation software, Brick-CFCMC [62]. The
CFCMC algorithms are also implemented in the RASPA soft-
ware [74, 75].

2. Historical overview of staged insertions and
deletions

In this section, an overview of the most important methods
leading to advancements in free energy calculations in the fra-
mework of expanded ensembles is provided, and a brief sum-
mary is shown in Table 1. Here, we highlight several of these
methods. In the nineties of the previous century, the idea of
expanded ensembles was introduced by Nezbeda and Kolafa
[76], Çagin and Pettitt [77, 78] and later reconsidered by Attard
[79] and Lyubartsev et al. [51]. In general, an expanded ensem-
ble is a set of sub-ensembles linked by a coupling parameter
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[53]. This coupling parameter can be a physical parameter (e.g.
temperature) or a non-physical parameter (e.g. λ) [80, 81]. In
literature, λ is also interchangeably called the scaling parameter
or order parameter, however for clarity reasons in the present
paper this term is denoted by ‘coupling parameter’. By chan-
ging the value of λ in an expanded ensemble (e.g. a CFCMC
simulation), one can perform a random walk between the cor-
responding sub-ensembles and calculate thermodynamic prop-
erties such as the chemical potential or partial molar properties.
A historical overview of expanded ensemble methods helps to
understand the workings and reasons behind the development
of CFCMC-type methods. A complete historical overview of
simulation methods using expanded ensembles is difficult to
find in a single publication. Occasionally, some discrepancies
are observed regarding the origin of the method. For instance,
in Ref. [82], the expanded ensemble method is attributed to
Lyubartsev et al. [51] and in Ref. [83], the first use of the coup-
ling parameter λ is attributed to Escobedo and de Pablo [53].
While Lyubarstev [51] and de Pablo [53, 67] were one of the
pioneers of the expanded ensembles, some of the preceding

works or ideas leading to their contributions are missing in
Refs. [82, 83]. Due to such discrepancies, we make an effort
to provide a more comprehensive account of how the expanded
ensembles were developed during the past decades. The main
ideas fundamental to expanded ensembles can be traced back
to the works of Born [84], Onsager [80] and Kirkwood [81],
and are thus more than 80 years old. In 1920, Born [84]
approximated the free energy of transfer of ions from the gas
to the liquid phase as the difference in the energy of charging
up a sphere in vacuum and the energy of charging up a sphere
in a dielectric medium [77, 85–88]. In fact, Born considered a
non-physical (alchemical) pathway for these calculations. In
1933, Onsager showed that for ionic species in a solution, the
electrostatic contribution to the chemical potential can be cal-
culated from the non-physical process of charging up the ion in
the solution [80]. As stated by Kirkwood [81], this is not
restricted to Coulombic charges. In general, fictitious (non-
physical) parameters are allowed to be used to manipulate mol-
ecular parameters, such as the molecular diameter etc. [81]. For
systems of pairwise interactions, the total intermolecular

Figure 1. (Colour online) Schematic representation of: (a) test molecule insertions, often resulting in overlaps in dense phases due to the lack of cavities large enough to
accommodate test molecules. (b–d) Gradual insertion or removal of a fractional molecule by performing random walks in λ-space. At l = 0, the fractional molecule does
not interact with the other ‘whole’ molecules (ideal gas behaviour) and at l = 1, the fractional molecule interacts fully with other whole molecules. By performing
thermalisation trial moves e.g. translations, rotations, volume moves, etc., the other whole molecules can adapt to the value of λ.
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Table 1. A historical overview of the most important methods and developments leading to advancements in staged insertions and free energy calculations in the
framework of expanded ensembles.

Year Author(s) Method Application/examples

1920 Born [84] Using a non-physical pathway for calculating the free energy of ion transfer
from the gas to the liquid phase

Free energy calculations in electrolyte solutions

1933 Onsager [80] Introduction of alchemical (non-physical) parameters to manipulate the
intermolecular interaction potential

Free energy calculations in electrolyte solutions

1935 Kirkwood [81] Introduction of the coupling parameter method and thermodynamic
integration

Computation of the chemical potential in a
homogeneous fluid

1955 Rosenbluth and
Rosenbluth [40]

Self-avoiding random walk for generating polymer conformations with a
certain statistical weight

Three-dimensional random walk of chains up to
64 segments

1960 Helfland et al. [90] Application of the coupling parameter method in scaled particle theory to
scale the intermolecular distance between a particle pair

Rigid spheres, square wells, LJ potential

1963 Widom [46] Widom’s test particle insertion method Lattice-gas model.
1985 Griffiths et al. [55] Introduction of the gradual insertion and deletion method for computing the

chemical potential
Two-dimensional LJ fluid

1988 Harris and Rice [103] Computation of chemical potentials of chain molecules by discretizing chain
conformations

Amphiphilic chains

1990 Siepmann [104] Direct simulation of flexible chain molecules; combining Widom’s test particle
insertion method and self-avoiding random walk

Monolayer systems on a lattice

1991 Nezbeda et al. [76] Combination of gradual test molecule insertion and Widom’s test particle
insertion method in the NVT ensemble (semi-grand-canonical ensemble) and

the grand-canonincal ensemble

Hard-sphere fluid at high densities

1991 Çagin et al. [77] Introduction of the concept of fractional molecules in grand-canonical MD,
evolution of the coupling parameter follows a deterministic approach

Liquid Argon

1991 Kumar et al. [105] Introducing the chain increment method. Computation of segmental
(incremental) chemical potential for chain molecules by appending/removing

segments to/from the ghost molecule

Homopolymers in the subcritical and
supercritical regime

1992 Kumar [106] The Hybrid Real Test Particle Method. The test molecule is allowed to move
around in the simulation box before deletion.

LJ systems

1992 Lyubartsev et al. [51] Method of expanded ensembles, free energy differences for a wide
temperature range from a single simulation

Hard-core potential (PRM-electrolyte)

1992 Siepmann and Frenkel
[65]

Configurational-Bias Monte Carlo (CBMC) Single chains on a two-dimensional lattice

1992 Frenkel et al. [66] Extension of the CBCMC to continuously deformable molecules and
computation of the chemical potential

Fully flexible chains of 10 to 20 segments

1992 de Pablo et al. [67] Continuum Configurational Bias (CCB) ghost-chain method. Growing the test
molecule segment by segment

Polymeric systems (limited to short chains)

1993 Attard [79] Computation of the chemical potential using a force-balance Monte Carlo
technique

Hard-sphere fluids

1994 Müller et al. [107] Free energy calculations using thermodynamic integration for excluded
volume interactions.

Lattice polymers up to 80 monomers.

1994 Lyubartsev et al. [108] Combination of the expanded ensemble method and constant temperature
MD simulations, stochastic changes of the coupling parameter during the

simulation.

LJ and water systems

1994 Wilding et al. [52] An efficient implementation of the method by Müller et al. Computing the
chemical potential by gradually coupling and decoupling a ghost chain

molecule in a single simulation [107][107]

Complex polymers, branched or ring structures

1994 Beutler et al. [109] Introduction of a new functional form for a stable soft-core for efficient free
energy calculations for van der Waals and Coulombic interactions

Polar nitrogen atoms and carbon atoms

1994 Kaminsky [93] Computation of the thermodynamic properties in augmented ensembles,
using an intermediate diameter approach

High density LJ fluid

1995 Lo et al. [110] Introduction of an alternative Hamiltonian and application of a soft core
potential in extended grand-canonical MD simulations

Vapor Liquid equilibrium of the LJ system

1995 Escobedo et al. [54] Introduction of the Expanded Variable Length Chain (EVALENCH) method,
single simulation computations using segmental insertions

Polymers applicable to all chain lengths

1996 Escobedo et al. [111] Improving the efficiency of the EVALENCH method using the Semianalytical
Local Mapping (SEAMAP) method

Single simulation of chemical potentials of long
chains at high densities

1996 Escobedo et al. [53] Expanded grand-canonical and Gibbs ensemble simulation of polymers Hard-core chain fluids and square-well chains
1998 Meirovitc [112] A tunable method for computing the chemical potential of chain polymers by

combining the chain increment method, the scanning method, and a
combination of the Rosenbluth technique and the WTPI method

Systems of chaing lengths 30 and 50

1999 Strnada et al. [115] Computation of the chemical potential in the extended Gibbs ensemble Binary mixtures of square-well fluid and hard-
spheres

2000 Bunker et al. [116] Parallel excluded volume tempering for polymer chains using a soft core
potential

The off-lattice Kremer-Grest model for polymers
for lenghts up to 200 monomers

2001 Vlugt et al. [212] Application of a soft core potential in the grand-canonical ensemble to
couple/decouple attractive and excluded volume interactions

Binary LJ systems

2003 Boinepalli et al. [118] Hybrid MD-MC grand-canonical simulation, the evolution of the coupling
parameter is deterministic.

LJ system

2005 Lísal et al. [119] Expanded-Ensemble Osmotic Molecular Dynamics (EEOMD) method. The
changes in the coupling parameter are stochastic using transition

probabilities from the grand-canonical ensemble

NaCl in water at ambient conditions

2007 Shi et al. [59] Continuous Fractional Monte Carlo (CFCMC) using adaptive biasing method in
open ensembles (grand-canonical ensemble)

LJ, water, CO-ethanol binary systems

(Continued )
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energy UN of a system containing N molecules is defined as

UN =
∑
k,l

Ukl (1)

where Ukl is the pairwise interaction potential between mol-
ecules k and l. Within the frameworks of statistical mechanics,
it is possible to define a fictitious pair potential using non-phys-
ical coupling parameters lm[[1,N] by modifying Equation (1) as
follows [81]:

UN l1, l2, . . .lN( ) =
∑
k,l

lkllUkl (2)

The interaction potential of Equation (1) is recovered if all λ’s
in Equation (2) are set to unity. For a homogeneous fluid, Kirk-
wood derived an expression for the excess chemical potential
using a single coupling parameter for component i [81]

mex
i =

∫1
0

∂U(li)
∂li

〈 〉
dli (3)

in which the coupling parameter li can continuously vary
between zero and one. The brackets denote an average in
the canonical ensemble. The introduction of λ in the inter-
molecular interaction potential (as in Equation (2)) is
known as the coupling parameter approach (or charging
parameter in electrolyte theory [89]). The coupling par-
ameter approach of Equation (3) is often referred to as ther-
modynamic integration and is also fundamental to the
development of expanded ensembles [28, 52, 57, 76, 87–
101]. The coupling parameter approach was used by Squire
and Hoover [58] to calculate the free energy of vacancy for-
mation in rare-gas crystals. Helfland et al. [90, 102] used the
coupling parameter approach [81] for developing Scaled
Particle Theory (SPT). In SPT, the coupling parameter λ
is used to scale the distance parameter in the pair potential.
The pairwise interaction potential of the ‘fractional’

molecule k with molecule l is a function of U = U(rlk/l).
Free energy calculations using SPT are inspired by the pio-
neering work of Kirkwood [81].

In the early 1990s, Nezbeda and Kolafa [76] introduced a
modified version of WTPI method [46] by combining SPT
[90, 129] and multistage sampling [55]. In this method (orig-
inally tested for a hard-sphere fluid) [76], the test molecule is
inserted in multiple stages. First, test molecule i is inserted as
a point, not interacting with the rest of the system. Second,
the diameter of the test molecule si is allowed to fluctuate
during the simulation. The values of intermediate si steps are
a priori unknown and need to be guessed for discrete staging
[76, 130]. In this expanded ensemble, random walks are per-
formed between the selected values of si [ (s1, sk) each cor-
responding to a sub-ensemble (k corresponds to the kth sub-
ensemble where the test molecule is maximally coupled). Sche-
matically, one can represent the random walk between the sub-
ensembles as [76]

N[ ]
W0

�� N + s1[ ]
W1

��· · ·�� N + sk−1[ ]
Wk−1

�� N + sk ; N + 1[ ]
Wk

(4)

The diameters s1 and sk refer to the most decoupled and
most coupled states of the test molecule, respectively. The
biasing factor Wi is the (a priori unknown) statistical weight
corresponding to the sub-ensemble i. For a system of N
molecules in the NVT ensemble, the expression for the
excess chemical potential using gradual molecule insertion
follows from [76, 130]

mex = −kBT ln
W0

Wk
× Prob[N + 1]

Prob[N]

( )
(5)

where Prob[N] is the probability of observing a system state
with N molecules. In Equation (5), extrapolation or interp-
olation of the histogram of the si states may be needed to

Table 1. Continued.

Year Author(s) Method Application/examples

2008 Shi et al. [60] Extension of the CFCMC method to the Gibbs ensemble LJ, water, SO2

2011 Pham et al. [120] Identifying low variance pathways for free energy calculations Application for a generalized soft-core potential
2011 Rosch et al. [42] Application of the CFCMC method in the reaction ensemble Propene methathesis reaction and methyl-tetr-

butyl-ether (MTBE) synthesis
2014 Torres-Knoop et al. [121] CB/CFCMC hybrid method; combination of the CFCMC method with the CBMC

method
Single and five-component isomers of hexane in

Fe2(BDP)3
2015 Sikora [122] Combination of the CBCMC and CFCMC methods based on the approach of

Torres-Knoop et al. [121]
High density adsorption in metal-organic

frameworks
2016 Poursaeidesfahani el al.

[123]
Improving the efficiency of the CFCMC method in the Gibbs ensemble by
using a single fractional molecule for direct computation of the chemical

potential

LJ and water systems

2017 Poursaeidesfahani el al.
[61]

Efficient application of the CFCMC method in the reaction ensemble LJ system and the ammonia synthesis reaction

2017 Yoo et al. [56] Discrete Fractional Monte Carlo, a modified version of the CFCMC method
using discrete staging is used instead of the continuous change of the

coupling parameter

C10E4 and water

2018 Mullen et al. [124] Identity changes between the reactants and reaction products in combination
with the CFCMC method (semi-grand trial move)

CO2 absorption in the reactive ionic liquid
triethyl(octyl)phosphonium 2-cyanopyrrolide

2018 Rahbari et al. [125] Computation of partial molar properties by combining the WTPI method and
the CFCMC method

Binary LJ color mixture, ternary mixtures of
ammonia, nitrogen and hydrogen

2019 Rahbari et al. [126] An alternative scheme to directly sample the states λ = 1 and λ = 0 leading to
an increased accuracy of computed chemical potentials

SPC/E water and TraPPE methanol, LJ systems

2020 Rahbari et al. [127] Multiple free energy calculations and computation of partial molar properties
by combining the CFCMC method and umbrella sampling [128]

Aqueous methanol mixtures and LJ systems

808 A. RAHBARI ET AL.



calculate the excess chemical potential [76] since the value
of si may exceed the interval (s1, sk) [76]. This method
can be implemented in multiple simulations [55], or in a
single simulation in the NVT ensemble (semi-grand-canoni-
cal ensemble) [76]. In principle, the staging in Equation (4)
can be either continuous or discrete [76]. Nezbeda and
Kolafa extended the method in Equation (4) to compute
the chemical potential in the grand-canonical ensemble
[76]. Application of Equation (5) to the NPT ensemble
was later considered by Vörtler et al. [131] for computing
chemical potentials of primitive water models [132, 133]
in the NPT ensemble. It is important to note that the
science behind the expanded ensemble method of Nezbeda
and Kolafa was (at least partly) inspired by SPT. Therefore,
one may consider the works of Born [77, 84], Onsager [80]
and Kirkwood [81] as the foundation for the expanded
ensemble methodology.

Çagin and Pettitt [77] were seemingly the first to com-
bine the idea of expanded ensembles with grand-canonical
Molecular Dynamics (MD), which was first proposed by
Cielinski and Quirke in 1985 [134, 135]. Çagin and Pettitt
used a linear coupling parameter to scale the mass and
the interactions of fractional molecules. Since the coupling
parameter is linked to Newton’s equations of motion, the
evolution of λ in time is deterministic throughout the simu-
lation trajectory [59, 77, 118]. To stabilise the method, bias-
ing is required due to large accelerations of the fractional
molecule in the presence of a large core repulsion [59,
110]. Attard [79] considered the idea of expanded ensembles
and SPT [90, 102] in the framework of force-balance Monte
Carlo [136]. To insert a solute molecule in a solution, mul-
tiple steps are considered by scaling the interactions of the
solute molecule using the coupling parameter λ. In contrast
to the gradual insertion method by Griffiths et al. [55], the
coupling parameter was continuous [79]. The interactions of
the fractional molecule with the rest of the system are scaled
using a coupling parameter λ, in the presence of an exter-
nally imposed biasing potential W(l). In the canonical
ensemble, the excess chemical potential of the solute is
obtained from the probability distribution of l [ [0, 1], cor-
rected for the imposed biasing potential W(l):

mex = −kBT ln
pobs(l = 1)
pobs(l = 0)

( )
− W(l = 1)−W(l = 0)[ ] (6)

in which W(l) is a priori unknown. The distribution pobs(l)
is the observed probability distribution of λ. The Boltzmann
distribution p(l) of the probability distribution of λ (which
is generally not flat) is obtained using
p(l) � pobs(l)× exp [−W(l)]. The imposed biasing poten-
tial can be selected such that pobs(l) is sampled sufficiently
for all values of λ [79]. To the best of our knowledge,
Attard [79] is seemingly the first who directly related the
chemical potential of a solute to the probability distribution
of λ. To obtain a flat distribution pobs(l), Wilding and Mül-
ler proposed an iterative scheme to obtain W(l) [52]. This
iterative method was later used by Lísal et al. for developing
the Expanded Osmotic MD technique [119]. This is

equivalent of using a weight function (biasing) to flatten
the observed probability distribution of λ [137, 138].

It is important to note that the idea of expanded ensembles
[76, 79, 139] is not exclusively applied to chemical potential cal-
culations [140, 141]. An expanded ensemble can be used to
evaluate the ratio of the partition functions (and therefore the
free energy difference) corresponding to any intermediate
sub-ensembles [54]. In Ref. [51], Lyubartsev et al. defined an
expanded ensemble as a summation of a number of canonical
sub-ensembles to obtain free energy differences as a function
of temperature. By performing random walks between different
sub-ensembles corresponding to different temperatures, free
energy differences can be obtained from a single simulation.
Wilding and Müller [52], used the concept of expanded ensem-
bles from Lyubartsev et al. [51] to introduce a method for cal-
culating the excess chemical potential of polymer chains. The
chemical potential of a ghost-chain molecule is obtained by
gradually coupling or decoupling the chain from the system
and obtaining the probability distribution of the coupling par-
ameter [52, 54]. Another implementation of the expanded
ensemble method was by Kaminsky (the so-called augmented
ensemble) which was originally applied to LJ and hard-sphere
systems [93].

To compute the chemical potential of macromolecules from
a single simulation, de Pablo et al. [54, 111] introduced the
Expanded Variable Length Chain Method (EVALENCH).
This method combines the ideas of Müller and co-workers
[52, 63], the Continuum Configurational-Bias (CCB) technique
[65–67, 142, 143] and the chain-increment method [106]. Simi-
larly, Escobedo and de Pablo [53] presented expanded grand-
canonical and Gibbs ensemble methods for simulating chain
molecules. In 2000, Bunker et al. [116] presented an efficient
method for equilibrating dense polymeric systems by scaling
the interactions of the excluded volume (using a soft-core
potential) within the framework of parallel tempering [51,
144, 145]. In this method, the interaction potential of an off-lat-
tice polymer with the rest of the molecules is scaled in a number
of parallel simulations (sub-ensembles). During this parallel
run, every system state corresponding to a scaling parameter
is always occupied, thus circumventing the sampling problem
of getting trapped in a specific configuration (when performing
random walks between sub-ensembles). For other studies on
the computation of chemical potentials of polymers using
expanded ensembles, the reader is referred to Refs. [108,
146–148].

To overcome the difficulties of molecule exchanges at
high densities, Strnada and Nezbeda [115] introduced an
extended version of the Gibbs ensemble [33], using the
ideas of the gradual insertion method [76] and SPT [90,
102]. In this extended version of the Gibbs ensemble, gra-
dual insertion/deletions are performed to facilitate molecule
transfers between the phases. Two different variations of the
method are proposed by Strnada and Nezbeda [115]. In the
first variation, a molecule is randomly selected as a so-called
scaled molecule in one of the boxes and the diameter of the
scaled molecule si is allowed to fluctuate between the states
i [ [1, k], see Equation (4). At the most decoupled state, the
scaled molecule is reinserted in the other simulation box.
When the scaled molecule interacts fully with the
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surrounding molecules, a new molecule is selected and the
process is repeated. This facilitates molecule exchanges
between the phases at high densities and allows for the cal-
culation of the chemical potential. The acceptance rules and
the expression for the chemical potential in the Gibbs
ensemble [149] are derived in Ref. [115]. In the second vari-
ation of the extended Gibbs ensemble method by Strnada
and Nezbeda [115], two scaled molecules are used, one
per simulation box [115]. The diameters of the scaled mol-
ecules are coupled which means that increasing the diameter
of one molecule directly leads to decreasing the diameter of
the other molecule. Both variations proposed in Ref. [115]
result in increased efficiency of molecule transfers in the
Gibbs ensemble at high densities. However, in the second
variation, it is not possible to directly calculate the chemical
potential [115].

In 2007, Shi and Maginn [59, 60] introduced a new version
of expanded ensembles, which draws upon a number of pre-
vious methods within the framework of expanded ensembles
[54, 76, 77, 79, 118, 119]. This method was given the name
Continuous Fractional Component Monte Carlo. In this
method, the molecule which is coupled to the parameter λ is
called the fractional molecule. The interaction potential of the
fractional molecule is scaled during the simulation depending
on the value of λ. Contrary to ‘whole’ molecules, the fractional
molecule does not interact with the rest of the molecules if
l = 0 (ideal gas behaviour). At l = 1 the interaction potential
of the fractional molecule with the rest of the molecules (the so-
called ‘whole’ molecules) is fully scaled. Besides thermalisation
trial moves in Monte Carlo simulations, e.g., translations,
rotations, volume moves etc., specific trial moves related to λ
are used for gradual insertion/deletion of the fractional mol-
ecule and for efficient sampling of the chemical potential. An
efficient combination of thermalisation trial moves and trial
moves related to the fractional molecule allows the system to
adjust to different values of λ and thereby to gradually insert
or remove a molecule [52–58, 150]. Different ways of scaling
the interactions of the fractional molecule are extensively inves-
tigated for pairwise interactions [97–100, 151, 152]. In Figure 1
(b–d), it is shown how a molecule can be inserted or deleted
gradually in multiple steps by varying λ. Compared to the pre-
vious methods, a new feature of the CFCMC method is self-
adapting biasing capability. This means that prior knowledge
of the biasing function W(l) is not needed. The iterative
Wang-Landau scheme [137, 138] can be used to obtain an esti-
mate of the biasing during equilibration. In this method, the
coupling parameter λ is chosen as a continuous variable. To
avoid numerical instabilities as a result of a large core repulsion,
Shi and Maginn used the scaled soft-core Lennard-Jones poten-
tial by Beutler et al. [109]. A generalised functional form for this
potential can be written as [120]

uLJ r,lLJ
( )=

laLJ4e
1

a 1−lLJ
( )b+ r/s

( )c
( )12/c

− 1

a 1−lLJ
( )b+ r/s

( )c
( )6/c

⎡
⎣

⎤
⎦

(7)

in which a,b,c and α are positive constants [120]. The

interaction potential proposed by Beutler et al. [109] is recov-
ered from Equation (7) by setting b=2 and c=6. For different
systems, the statistical variance of free energy calculations
depends on the values of these constants [120]. Examples of
constants leading to low variance alchemical pathways are the
(a,b,c)=(1-1-48) and (1-1-6) soft core LJ potentials with typical
values of a=0.0025 or a=0.5 depending on the system [120].
To emphasise the continuous nature of λ, Shi and Maginn used
the term ‘continuous’ in the name of the method. In principle,
system properties should not depend on whether λ is discrete or
continuous [56, 150].

In the CFCMC version of the Gibbs ensemble by Shi and
Maginn [59, 60], two fractional molecules are added (one frac-
tional molecule of a component per phase), and the interaction
parameters of the two fractional molecules are coupled. This is
similar to the second variation of the extended Gibbs ensemble
method by Nezbeda and Kolafa [76]. Since gradual insertion of
a fractional molecule in one phase is accompanied by a gradual
removal of the fractional in the other phase, direct computation
of the chemical potential using this method is not possible
[115]. In 2016, Poursaeidesfahani et al. modified this method
of Shi and Maginn to increase molecule exchange efficiencies
in the Gibbs ensemble, using a single fractional molecule per
component, which allows one to compute the chemical poten-
tial of a component in both phases simultaneously [123]. This is
similar to the first variation of the extended Gibbs ensemble
method by Nezbeda and Kolafa [76]. Poursaeidesfahani et al.
[123] derived an expression for the chemical potential and
showed that it is identical to the chemical potential obtained
by Frenkel and Smit [149] in the conventional Gibbs ensemble.

Besides studying phase equilibria, Monte Carlo simulations
can also be used to model chemical equilibrium of non-ideal
reactive systems [153–156]. Monte Carlo simulations of non-
ideal reactive systems allow for quantifying the effect of the
medium on the composition at chemical equilibrium. In
1994, the reaction ensemble Monte Carlo technique was devel-
oped independently by Johnson et al. [153] and Smith and
Triska [156]. The former method allows only the reaction of
type A+ B � C while the latter is a fully general method. In
this ensemble, one can obtain equilibrium distribution of reac-
tants and reaction products in non-ideal systems. This method
only considers chemical equilibrium and not the reaction path-
way, reaction rate or transition rate. In the conventional reac-
tion ensemble, a forward reaction is mimicked by removing
reactant molecules and inserting reaction products in a single
Monte Carlo step. However, the problem of insertion and del-
etion of molecules is also present in reactive systems when the
density is high. Some earlier attempts to improve the efficiency
of the reaction ensemble involved the combination with the
CBMC technique [157, 158]. Jakobtorweihen et al. [157, 158]
combined the reaction ensemble with CBMC and derived the
corresponding acceptance rules. To overcome the problem of
insertion and deletion of molecules, the method of expanded
ensembles was also applied to simulations of reactive systems.
Maginn and Rosch applied the CFCMC approach to the reac-
tion ensemble to improve the molecule exchange efficiency
between reactants and reaction products [42]. In this method,
a single coupling parameter is assigned to reactants and the
same coupling parameter is used to scale the interactions of
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the reaction products. Therefore, the chemical reaction is
mimicked by continuous insertion of reaction products and
simultaneous removal of reactants using a single coupling par-
ameter λ. By combining the reaction trial moves with therma-
lisation trial moves, the system reaches chemical equilibrium.
Recently, Poursaeidesfahani et al. [61] modified the method
of Rosch and Maginn to further increase the efficiency of mol-
ecule exchanges between reactants and reaction products and
to simultaneously compute the chemical potentials of all reac-
tion products and reactants. The crucial difference is to have
fractional molecules of either reactants or reaction products,
instead of fractional molecules of both reactants and reaction
products. Unlike in Ref. [42], this allows the computation of
the excess chemical potential of all molecules participating in
the chemical reaction. Comparing the chemical potentials of
reaction products and reactants is an important check for
chemical equilibrium, or programming errors in the software.

One of the recent applications of the CFCMC method is the
direct computation of partial molar enthalpies and volumes in
non-ideal mixtures [125, 127]. Partial molar volumes and
enthalpies are first-order derivatives of the chemical potential
at constant pressure. Similar to chemical potentials, these prop-
erties cannot be sampled directly as a function of momenta or
coordinates of a single configuration in the phase space [125,
149, 159–161]. It is possible to compute partial molar

enthalpies from �hi = (∂(bmi)/∂b)P,Nj=i
in which b = 1/(kBT)

and partial molar volumes �yi = (∂mi/∂P)T ,Nj=i
either by deriv-

ing expressions based on statistical mechanics or by numerical
differentiation of the chemical potential as a function of T and
P. In 1987, Sindzingre, Frenkel and Ciccotti [159] derived
expressions to directly calculate partial molar enthalpies and
partial molar volumes based on an extension of the WTPI
method. Similar to other Widom-like methods, application of
this method to systems with strong and directional intermole-
cular interactions is difficult. Recently, Rahbari et al. [125] com-
bined the CFCMC method with the method of Sindzingre et al.
[159] to obtain partial molar properties in CFCMC simulations.
In Ref. [125], it is shown that both methods yield identical
results. To date, other methods are also developed to compute
partial molar properties of non-ideal mixtures from molecular
simulations: (1) Direct numerical differentiation of thermodyn-
amic extensive properties (e.g. enthalpy or volume) requiring
several independent simulations [28, 159]. Direct numerical
differentiation of data is susceptible to noise when the data is
obtained from computer simulations or experiments. Lubansky
et al. [162] proposed an improved numerical differentiation
algorithm based on the Tikhonov regularisation [163]. With
this, derivatives from non-uniformly distributed data points
can be obtained accurately.; (2) Kirkwood-Buff integrals
[164–170]; (3) Multiple Linear regression by fitting

Figure 2. (Colour online) MC trial moves in the CFCMC Gibbs ensemble are used to perform stepwise molecule exchanges between the phases [123]. The coupling
parameter λ is used to scale the interactions of the fractional molecule with surrounding molecules. The deletion or insertion of the fractional molecule is staged
using the coupling parameter λ. Trial moves to facilitate molecule exchanges are: (a) Random walks in λ-space: attempts to randomly change the value of λ while keeping
the positions of all molecules constant. For the cases l , 0 or l . 1, the trial move is rejected. (b) Swapping the fractional molecule: the fractional molecule is removed
from one simulation box and inserted at a randomly selected position in the other simulation box. The value of λ is not changed in this trial move. (c) Identity changes: an
attempt to transform the fractional molecule into a whole molecule, accompanied by changing a randomly selected molecule in the other simulation box into a fractional
molecule, while keeping the positions of all molecules fixed. For these trial moves, the acceptance rules are derived in Ref. [123].
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instantaneous values of an extensive property X as a function of
the instantaneous number of molecules of each component
[161, 171]. This method requires a simulation in an open
ensemble; (4) The difference method. Sindzingre et al. [159]
proposed molecule swaps (identity changes) in binary systems,
as an alternative to insertion of test molecules. Sampling
difficulties related to this method arise especially if the two mol-
ecules are very different in size or interaction parameters. (5)
Calculation of partial molar properties by combining the
CFCMC method and umbrella sampling in the NPT ensemble
[127]. By combining these methods one can compute the
chemical potential as a function of temperature and pressure
close to the simulation conditions. Partial molar properties
are then obtained by numerically evaluating
�hi = (∂(bmi)/∂b)P,Nj=i

and �y = (∂m/∂P)T ,Nj=i
. The only

additional computational cost in this method is related to
filling additional histograms during the simulation which is
negligible compared to energy calculations. Partial molar prop-
erties obtained using umbrella sampling can be used indepen-
dently or as a check for the results obtained from the other
methods [125].

3. Continuous fractional component Monte Carlo in
the Gibbs ensemble

In sharp contrast to single-step molecule exchanges in the
conventional Gibbs ensemble, molecule exchanges in the
CFCMC Gibbs ensemble are performed in multiple steps
by using fractional molecules. Thereby, efficient molecule
exchanges between the simulation boxes do not depend on
the formation of spontaneous cavities in the system.
Additional trial moves related to the fractional molecule
are used to facilitate molecule exchanges [123]: (1) Random
walks in λ-space: an attempt to change the value of the
coupling parameter λ while keeping the orientations and
positions of all molecules constant. A weight function (bias-
ing) is used to ensure a flat probability distribution of λ.
This improves sampling of the chemical potential [52, 59,
60, 123, 126]. Usually, a suitable estimation of the weight
function is obtained using the Wang-Landau algorithm
[137, 138]. An iterative scheme can be then used to further
refine the weight function [42, 59, 60, 123]. At the end of
the simulation, one can correct for the biasing when com-
puting ensemble averages. (2) Swapping the fractional mol-
ecule: an attempt to insert the fractional molecule at a
randomly selected position and orientation in the other
simulation box. Except for the fractional molecule, orien-
tations and positions of the other molecules do not change.
This trial move has a higher acceptance probability when λ
is close to zero. This is due to weak interactions of the frac-
tional molecule with the rest of the molecules at low λ,
resulting in a low energy penalty for generating the new
configuration. Biasing is used to ensure that the fractional
molecule is equally likely located in the two simulation
boxes. (3) Identity changes: an attempt to transform the
fractional molecule into a whole molecule, accompanied by
the transformation of a randomly selected whole molecule
in the other simulation box into a fractional molecule.
The orientations and positions of other molecules and the

value of λ are fixed. When λ is close to one, the interaction
potential of the fractional molecule is nearly fully developed.
Therefore, for this trial move the energy difference between
the old and new configurations is small when λ is close to
one, leading to a high acceptance probability. To increase
the efficiency of molecule exchanges in the CFCMC Gibbs
ensemble, it is possible to combine trial moves (2) and (3)
into a hybrid trial move [125]. Using this combination, mol-
ecule swaps are only performed when λ is close to zero and
identity exchanges are only performed when λ is close to
one. Since no attempt is made to change the value of λ
in this hybrid trial move, the condition of detailed balance
is obeyed [28, 61, 125]. In Figure 2, the trial moves related
to the fractional molecule in CFCMC Gibbs ensemble are
schematically illustrated. In Ref. [123], the acceptance rules
for these trial moves are derived based on Metropolis
importance sampling and the condition of detailed balance
[28, 39]. An important benefit of using a single fractional
molecule per component is that it enables the direct compu-
tation of the chemical potential of each component in each
phase. It is shown in Ref. [123] that the chemical potential
of component i in each phase, using an ideal gas reference
state, is obtained from

mi = m0
i (T)+ kBT ln

ri
〈 〉
r0

( )
︸������������︷︷������������︸

Ideal gas part

−kBT ln
p(li = 1)
p(li = 0)

( )
︸������������︷︷������������︸

Excess part:mex
i

(8)

in the term p(li) is the Boltzmann probability distribution
of li and r0 is an arbitrary reference number density. In
Equation (8), the term Ni+1

V of Ref. [28] is replaced with
ri = Ni

V which takes into account finite-size corrections of
the ideal gas part of the chemical potential [28, 37, 172].
m0
i (T) is the reference chemical potential containing the

intramolecular contributions and is related to the partition
function of the isolated molecule i [96]

m0
i (T) = −kBT ln

qi(T)

L3
i

( )
1
r0

[ ]
(9)

in which Li is the thermal wavelength of component i and
qi(T) is the partition function of the isolated molecule
(excluding the translational contribution). For phase equili-
bria calculations not involving chemical reactions, the choice
for the reference state for m0

i is not important. The term r0
can be set to 1 Å−3 and is only used to make the arguments
of the logarithms of Equation (9) and (8) dimensionless. In
the reaction ensemble [153, 156], the value of m0

i (T), or
alternatively the value of qi(T)/L

3
i , is required as simulation

input. This term accounts for the ideal gas Gibbs energy
change of the reaction. For some components, values of
m0
i (T) can be found in tabulated thermodynamic tables

e.g. JANAF tables [96, 173, 174]. In the JANAF tables, the
reference state r0 is defined such that r0 = P◦

kBT
(P◦ = 1

bar). It is important to note that other tabulated thermo-
dynamic tables may use a different reference state. Alterna-
tively, qi(T) can be computed from ab initio Quantum
Mechanical calculations or computational chemistry data-
bases [175, 176]. Details about the computation of partition
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function of isolated molecules are provided in Refs. [96, 175,
176]. A detailed recipe to compute m0

i from either the
JANAF tables [174] or Gaussian09 [177] can be found in
the supporting information of Ref. [62]. In Equation (8),
the second term of the ideal gas part is related to the num-
ber density of species [28]. The third term on the right
hand side of Equation (8) is the excess chemical potential
of species which is obtained from sampling the probability
distribution of λ. Alternatively, Equation (3) can be used
to obtain the excess chemical potential. The fugacity coeffi-
cient of component i follows from [175]:

fi =
NtRT
P V〈 〉 exp mex

i / RT( )[ ] = exp mex
i / RT( )[ ]
Zm

(10)

in which Zm = NtRT
P〈V〉 is the compressibility of the mixture

and Nt is the total number of molecules in the mixture.
As a typical application, Rahbari et al. [178] used the CFCMC

Gibbs ensemble to simulate the phase coexistence of water-
hydrogen systems, for pressures between P=10 bar and P=1000
bar and temperatures between T=323 to T=423 K. This system
is of interest for the refuelling of hydrogen cars [8, 9]. Due to
high density of the liquid phase, molecule exchanges were facili-
tated using fractional molecules of water and hydrogen. It was

concluded that solubility of water in the gas phase (hydrogen)
is adequately predicted using non-polarisable rigid force fields
for water and hydrogen. At equilibrium, the chemical potentials
of water and hydrogen in the liquid and gas phase are obtained
using Equation (8). In Figure 3, it is shown that for TIP3P water
[179] and the Marx hydrogen force field [180], equal chemical
potentials are obtained in both phases (Equation (8)). In Ref.
[45], vapour-liquid equilibria of water, methanol, carbon dioxide
and hydrogen sulphide is studied for temperatures between
T=220 K and T=375 K. The chemical potentials of pure com-
ponents in both phases are obtained from the CFCMC method
and the condition for phase equilibrium is confirmed, even at
low temperatures at which the density of the liquid phase is
high. Other applications of the CFCMC Gibbs ensemble can
be found in Refs. [181–184].

4. Application of CFCMC in the reaction ensemble

As explained earlier, inherent limitations associated with mol-
ecule insertions or deletions at high densities impede the appli-
cation of the conventional reaction ensemble at high densities
[42, 61, 155]. Combining methods such as cavity biasing with
the reaction ensemble [186] increases the efficiency of insertions,

Figure 3. (Colour online) Chemical potentials of water (TIP3P [179]) and hydrogen (Marx [180]) from vapour-liquid equilibrium simulations of binary water-hydrogen
mixtures in the CFCMC Gibbs ensemble, as a function of pressure, at T=323 K (squares), T=366 K (diamonds), T=423 K (triangles). (a) Chemical potential of water in
the liquid phase (closed symbols) and chemical potential of water in the gas phase (open symbols). (b) Chemical potential of hydrogen in the liquid phase (closed sym-
bols) and chemical potential of hydrogen in the gas phase (open symbols). Lines and dashed lines are used as a guide for the eye for the liquid phase and gas phase,
respectively. The chemical potentials in this figure are part of the previously published VLE data of water-hydrogen of Ref. [178]. These chemical potentials were not
explicitly reported in Ref. [178]. Simulation details on the phase coexistence of the water-hydrogen system are provided in Ref. [178]. Raw data and uncertainties
are provided in the Supporting Information. (c) Molecule exchanges between the liquid and the gas phase are performed in a gradual manner using the fractional mol-
ecules of water and hydrogen (marked molecules). The snapshot is generated using iRASPA [185].
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however this method still depends on the random occurrence of
cavities in the system. Since the introduction of the CFCMC
method in the reaction ensemble [42], the method has been
used to study chemical equilibrium in reactive systems [43, 63,
64, 124, 187]. The benefits of using this method are most distinct
when studying systems at high densities, e.g. chemisorption of
CO2 in monoethanol amine mixtures [64], absorption of CO2

in reactive ionic liquid solutions [124], or esterification of etha-
nol with acetic acid [62]. Recently, Poursaeidesfahani et al. [61]
introduced an efficient alternative formulation of the CFCMC in
the Reaction Ensemble (Rx/CFC). The essential part of this
method is that fractional molecules of either reaction products
or reactants are present and that the trial moves mimicking
chemical reactions always involve fractional molecules [61]. In
the Rx/CFC simulations, a coupling parameter λ is used to
scale the interaction potential of reactants or reaction products.
The chemical reaction is performed by gradual staging of λ.
The chemical reaction is staged in multiple steps using three
additional trial moves involving fractional molecules (similar
to the application of the CFCMC in the Gibbs ensemble as

described in Section 3): (1) Random walks in λ-space: an attempt
to change the value of λ while the orientations and positions of
all other molecules are fixed. Just as for the CFCMC Gibbs
ensemble, biasing of λ is needed for efficient computation of
the chemical potential efficiently. Trial moves that result in
l , 0 or l . 1 are automatically rejected. (2) Reaction for the
fractional molecules: an attempt to insert fractional molecules
of reaction products and remove fractional molecules of reac-
tants with the same value of λ at randomly selected orientations
and positions, or vice versa. In this trial move, coordinates,
orientations and number of whole molecules are kept fixed.
This trial move is most efficient at low values of λ. Due to the
weak interactions of the fractional molecule(s) with the other
molecules, the energy penalty for generating the new configur-
ation is often small. Biasing is used to ensure that fractional mol-
ecules of reactants and reaction products are equally likely. (3)
Reaction for the whole molecules: an attempt to transform ran-
domly selected reaction product molecules into fractional mol-
ecules accompanied by transforming the fractional molecules
of reactants into whole molecules or vice versa. In this trial

Figure 4. (Colour online) Trial moves associated with fractional molecules facilitating chemical reactions in the reaction ensemble. The ammonia synthesis reaction
N2 + 3 H2 O 2 NH3 is considered as an example to demonstrate the trial moves: (a) Random walks in λ-space: an attempt to change the value of λ while orientations
and positions of all molecules are fixed. Here, the coupling parameter is used to scale the interactions of N2 + 3 H2. (b) Reaction for the fractional molecules; the fractional
molecules of reaction products 2 NH3 are inserted and the fractional molecules of the reactants N2 + 3 H2 are removed. The orientations and positions of other molecules
are unchanged. (c) Reaction for the whole molecules; randomly selected reaction products (2 NH3) are transformed into fractional molecules and the fractional molecules
of the reactants N2 + 3 H2 are transformed into whole molecules. The acceptance rules for these trail moves are provided in Ref. [61].
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move, the orientations and positions of all molecules and the
value of λ are fixed.When the value of λ is close to one, the inter-
actions of a fractional molecule are similar to the interactions of a
whole molecule. This means that the energy penalty related to
this trial move is often small when the value of λ is close to
one, and the trial move has a high acceptance probability.
Trial moves of type (2) and (3) can be combined into a hybrid
trial move [61]. In this hybrid trial move, the reaction for the
fractional molecules is performed only when λ is close to zero,
and the reaction for the whole molecules is performed when λ
is close to one. These trial moves are automatically rejected for
intermediate values of λ. An equilibrium distribution of reactants
and reaction products is obtained by combining the aforemen-
tioned reaction trial moves (related to λ) with other thermalisa-
tion trial moves such as translations, rotations, etc. [61, 153, 156].
In Ref. [61], the Rx/CFC approach was tested to simulate ammo-
nia synthesis at high pressures and various pressures. As an
illustrative example, the trial moves associated with the fractional

molecules in Rx/CFC simulations of the ammonia synthesis
reaction, N2 + 3H2 O 2NH3 are shown in Figure 4. At equili-
brium, the stoichiometric-coefficient-weighted sums of chemical
potentials of the reactants and reaction products are equal [1,
96]. For a chemical reaction in a single phase, one can write

∑R
i=1

nimi =
∑R+P

i=1+R

nimi (11)

in which R is the number of reactants and P is the number of
reaction products, mi and ni denote chemical potential and the
stoichiometric coefficient and of component i, respectively. In
Ref. [61], it is shown that the left hand side of Equation (11) is
obtained from:

∑R
i=1

nimi = −kBT ln
∏R
i=1

qi
Li

3ri

( )ni
〈 〉

︸��������������︷︷��������������︸
Ideal gas part

−kBT ln
p(lR = 1)
p(lR = 0)

( )
︸������������︷︷������������︸

Excess part

(12)

The second term on the right hand side of Equation (12) is the
excess contribution of the chemical potential due to intermolecu-
lar interactions. The excess contribution for the reactants is
directly obtained from the Boltzmann probability distribution
of lR for the reactants. A similar equation can also be written
for the reaction products. Since the excess chemical potential
and the fugacity coefficient are related thermodynamic quantities
[1], one can directly calculate the fugacity coefficients of reac-
tants or reaction products in a Rx/CFC simulation [61, 175]

∏R
i=1

wi
−ni = p(lR = 1)

p(lR = 0)

( )
× Zm( )j (13)

in which j = ∑R
i=1 ni. Note that in Equations (13) and (12), the

interaction potentials of all reactants are scaled simultaneously
using lR. By selecting this alchemical pathway, the chemical
potentials and fugacity coefficients of individual components

Figure 5. (Colour online) (a) Mole fractions of ammonia at chemical equilibrium
obtained from Rx/CFC simulations (symbols) and experiments (solid lines) [188]
at 573 K (circles), 673 K (upward-pointing triangles), 773 K (squares) and, 873 K
(downward-pointing triangles) as a function of pressure. All simulations were
started from a random configuration of 120 N2 and 360 H2 molecules and no
ammonia molecules. (b) Fugacity coefficients of ammonia at equilibrium obtained
from Rx/CFC simulations (symbols) using Equation (13) and the Peng-Robinson EoS
(lines) [24] at 573 K (circles), 673 K (upward-pointing triangles), 773 K (squares)
and, 873 K (downward-pointing triangles) as a function of pressure. Raw data is
taken from Ref. [61].

Figure 6. (Colour online) Reaction enthalpy of the Haber-Bosch process per mole
of N2 at pressures between 100 bar and 800 bar, at T=573 K. The reaction enthalpy
at P=1 bar is indicated with an arrow on the left hand side of the figure. The con-
tribution of intermolecular interactions to the reaction enthalpy is computed
using: Peng-Robinson EoS (upward-pointing triangles); PC-SAFT (downward-poit-
ing triangles); CFCNPT ensemble (circles). No binary interaction parameters were
used in the EoS modelling. The data is taken from Ref. [125].
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cannot be computed in a Rx/CFC simulation. Instead, one can
select an alchemical pathway to scale the interactions of reactants
(or reaction products) molecule by molecule. In such a way, the
chemical potentials and fugacity coefficients of all individual
components are obtained [61].

In Ref. [61], the equilibrium mixture composition of the
ammonia synthesis reaction was computed in the reaction
ensemble at temperatures between T=573 K and T=873 K and
pressures between P=100 bar to P=800 bar. The reference
chemical potentials m0

i (T) were obtained by calculating the par-
tition function of isolated molecules based on the experimental
data of Ref. [96]. The results are shown in Figure 5. Excellent
agreement is observed between experimental results [188]
and the results obtained from Rx/CFC simulations. In Figure
5, the fugacity coefficients of ammonia in the equilibrium mix-
ture are computed using Rx/CFC simulations and the Peng-
Robinson EoS (without any binary interaction parameters).
At low pressures, good agreement is observed between both
simulation results. At high pressures, larger deviations are
observed between molecular simulation results and the results
obtained from the Peng-Robinson EoS. This is expected as
the Peng-Robinson EoS is known to fail to provide accurate
estimates of fugacity coefficients [189].

5. Direct calculation of partial molar enthalpies and
volumes in non-ideal mixtures

To compute the partial molar volumes and enthalpies by gra-
dual insertion or removal of molecules in the NPT ensemble,
Rahbari et al. combined method of Sindzingre et al. [159,
160]. With the CFCMC method [125]. This method yields
identical results compared to the method by Sindzingre et al.

[159, 160]. However, gradual insertion or deletion of molecules
allows the CFCMC method to outperform the method of Sind-
zingre et al. [159, 160] at high densities. In Ref. [125], it is
shown that the partial molar excess enthalpy with respect to
ideal gas state can be computed by accumulating three histo-
grams in λ-space: enthalpy (H ), enthalpy over volume (H/V )
and reciprocal of volume (1/V ). For component i, the partial
molar excess enthalpy with respect to ideal gas state is obtained
in the NPT ensemble using

�h
ex
i = − 1

b
+ H li = 1( )〈 〉 − H/V li = 0( )〈 〉

1/V li = 0( )〈 〉 (14)

It is shown in Ref. [125] that �h
ex
i is zero for an ideal gas in which

no intermolecular interactions are present. In a similar way, the
partial molar volume is computed by accumulating two histo-
grams in λ-space: the ensemble average of volume (V ) at l = 1
and the ensemble average of the reciprocal of volume (1/V ) at
l = 0 [125]

�yi = V(li = 1)〈 〉 − 1/V (li = 0)
〈 〉−1

(15)

Instead of directly computing partial molar properties from
Equations (14) and (15), one can numerically differentiate the
chemical potential with respect to temperature or pressure
from a single CFCMC simulation [127]. This is due to the
fact that the CFCMC method allows one to also compute the
chemical potential as a function of temperature or pressure
from a single isothermal-isobaric simulation [127]. To obtain
the chemical potential as a function of temperature or pressure,
Rahbari et al. [127] combined the CFCMC method with the
umbrella sampling method originally developed by Valleau
and Torrie [128]. In Ref. [127], it is shown that by performing

Figure 7. (Colour online) Probability distribution p(l, T ) for pure methanol obtained from CFCNPT simulation at T=298 K and P=1 bar (410 molecules). Equation (17) is
used to compute p(l, T ) for temperatures between 329 and 273 K from a single simulation at 298 K. The bold red line indicates the Boltzmann distribution of
p(l, T = 298 K). The data is taken from Ref. [127].
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a single CFCMC simulation at (Tw, Pw), the distribution p(l)
can be sampled as a function of T, close to the simulation con-
ditions while keeping the composition fixed:

p l, T( ) = c · d(l
′ − l) exp

1
kBTw

− 1
kBT

( )
H

[ ]〈 〉
Tw

(16)

in which c is a normalisation constant. The excess chemical
potential (Equation (8)) as a function of T is obtained directly
from p(l = 1, T) and p(l = 0, T). Similarly, by performing a
single CFCMC simulation at (Tw, Pw), the distribution p(l)
can be sampled as a function of P, while keeping the compo-
sition fixed [127]:

p l, P( ) = c · d(l
′ − l) exp bV Pw − P

( )[ ]〈 〉
Pw (17)

The excess chemical potential (Equation (8)) as a function of P
is obtained directly from p(l = 1, P) and p(l = 0, P). In prin-
ciple, the computed excess chemical potentials from Equation
(17) and (16) are accurate for pressures and temperatures
close to the simulation conditions. This means that the differ-
ences T − Tw or P − Pw should be small to maintain sufficient
overlap between the configuration spaces [28, 127, 128]. It is
important to note that the overlap between the configuration
spaces of a system at different state points strongly depends
on the size of the system. In the thermodynamic limit, the rela-
tive fluctuations in energy or density vanish. Therefore, the
temperature and pressure range used in Equations (16) and
(17) should be small, as the relative magnitude of fluctuations
decreases with the system size. For computation of partial
molar properties, selecting a narrow pressure or temperature
range is acceptable [127].

Application of the CFCMC method in the NPT ensemble
requires trial moves facilitating the sampling of λ: (1) Random
walks in λ-space: an attempt to change the value λ, while keeping
the orientations and positions of all molecules fixed. To flatten
the probability distribution of λ and calculate the chemical
potential efficiently, biasing is needed; (2) Swapping the frac-
tional molecule: an attempt to reinsert the fractional molecule
at a random position in the system. Except for the fractional
molecule, orientations and positions of other molecules do not
change. This trial move has a high acceptance probability at
when the value of λ is close to zero, as explained in Section 3;
(3) Identity changes: an attempt to transform the fractionalmol-
ecule into a whole molecule, accompanied by transforming a
randomly selected whole molecule of the same type into a frac-
tional molecule. The acceptance probability of this trial move is
higher when the value of λ is close to one as explained in Section
3. In the NPT ensemble, only trial move (1) would be sufficient
(besides the thermalisation trial moves) to perform a random
walk in λ-space. However, performing trial moves (2) and (3)
significantly improves the sampling [125]. The trial moves (2)
and (3) can be combined into a hybrid trial move [125].

A combination of the aforementioned trial moves with con-
ventional thermalisation trial moves allows one to efficiently
compute partial molar volumes and enthalpies in a simulation
in the NPT ensemble. In Ref. [125], partial molar properties of
ammonia, hydrogen and nitrogen were calculated using
Equations (14) and (15) at chemical equilibrium for pressures
between P=10 MPa and P=80 MPa [125]. In Figure 6, the

results were compared to the results obtained from PC-SAFT
[30] and the Peng-Robinson EoS [24]. It can be observed that
the contribution of partial molar excess enthalpies is not negli-
gible at high pressures. The results obtained in Figure 6 under-
line the importance of using physically based models for
complex systems, since molecular simulations and PC-SAFT
EoS clearly outperform the Peng-Robison EoS at high press-
ures. In Ref. [127], it is shown that by running sufficiently
long simulations, the computed partial molar properties
obtained from Equations (16) and (17) are statistically indistin-
guishable from the results obtained from Equations (14) and
(15). The limitations of Equations (16) and (17) were tested
for liquid methanol (N=410 molecules) at P=1 bar and
T=298 K. From a single simulation, the distribution p(l) was
computed for temperatures between T=273 K and T=320 K.
The results are shown in Figure 7. In Ref. [127], it is shown
that the computed chemical potentials were in excellent agree-
ment for DT = 15 K relative to the simulation conditions. For
DT . 15 K, the overlap between the configuration space of the
system (N=410 molecules) at two different temperatures is not
sufficient and the method breaks down. Therefore, the pressure
(or temperature) range should be selected with care to make
sure sufficient overlap in configuration spaces exists between
the systems.

6. Other recent applications of the CFCMC method

Due to the increase in computational power, the CFCMC
method can be applied to complex systems, for instance simu-
lation of adsorption of different species in nanoporous
materials in the grand-canonical ensemble and osmotic ensem-
ble and computation of thermodynamic properties of com-
ponents in confinement [63, 121, 122, 187, 190–193]. In
these simulations, a single fractional molecule per component
type can be used to facilitate molecule exchanges between the
ideal gas reservoir and the nanoporous structure. By combining
the CFCMC methodology and thermodynamic fluctuations in
the grand-canonical ensemble, one can calculate the enthalpy
of adsorption close to saturation [194]. This is due to the fact
the efficiency of molecule insertions/deletions is considerably
increased using the CFCMC method. It is important to note
that for sufficiently large systems, most ensemble averages are
independent of the presence of fractional molecules [126].

For large chain molecules, it may be advantageous to com-
bine the CFCMC method with the CBMC method [65–67] to
improve the efficiency [121, 122]. It is shown in Ref. [121]
that already at medium densities, the efficiency of the
CFCMC can be higher than that of the CBMCmethod. Achiev-
ing an even higher efficiency is possible by combining CFCMC
with the CBMC (CB/CFCMC) [122, 195, 196]. This is
especially the case for systems including long chain molecules,
or molecular systems with strong/directional interactions (ionic
liquids, water, etc.) [195]. The CFCMCmethod (both 2007 [59]
and 2016 versions [123]) has been a frequently used method for
studying VLE calculations [45, 60, 182, 183, 197], screening of
gas solubilities of different compounds in various solvents
[198–200], calculations of physisorption and chemisorption
of different compounds in liquid solvents [42, 64, 201–210].
Recently, Mullen and Maginn [63] introduced an adaptation
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of the reaction ensemble combined with the CFCMCmethod in
which pairwise transformation of xylene isomers is simulated
by performing walks in λ-space. This adaptation of the
CFCMC method improves sampling of orientation and pos-
ition of the xylene isomers during the simulation.

One of the promising applications of the CFCMC method is
the possibility to combine phase- and reaction equilibria in
high-density systems. Recently, Hens et al. [62] performed
simulations of esterification of ethanol with acetic acid
(CH3OH + CH3COOH O CH3COOCH3 + H2O) by combin-
ing the phase- and reaction equilibria using the CFCMC
method. At equilibrium, this system consists of a water-rich
phase and an ester-rich phase [62]. The coexistence of both
phases can be simulated in the Gibbs ensemble combined
with the reaction ensemble allowing reaction steps in addition
to molecule exchanges between the phases. In the CFCMC
simulations of the esterification reaction, fractional molecules
of reactants or reaction products are present in each simulation
box, while Gibbs ensemble type fractional molecules facilitate
molecule transfers between the phases. For simulation details,
the reader is referred to Ref. [62].

7. Conclusions and outlook

The CFCMC simulation methodology is one of the tools for
overcoming sampling difficulties associated with phase equili-
bria calculations of dense fluids. In this manuscript, we provide
a historic overview of the most important developments of the
methods allowing molecule insertions in multiple steps leading
to the CFCMC method (Section 2 and Table 1). In CFCMC
simulations, single-step molecule insertions/deletions are
replaced by gradual insertions/deletions by means of fractional
molecules. This allows for efficient molecule exchanges between
different phases, or between reactants and reaction products in
a reactive system. An important advantage of this method is
direct calculation of the chemical potential and partial molar
properties from a single simulation. Contributions to the
chemical potential due to intermolecular interactions are
obtained by binning the coupling parameter λ and constructing
the probability distribution p(l) during the simulation. By
combining the CFCMC method with umbrella sampling, Rah-
bari et al. [127] showed that the chemical potential in CFCMC
simulations can be computed as a function of temperature and
pressure from a single-state simulation. By numerical differen-
tiation of the chemical potential with respect to pressure or
temperature, partial molar enthalpies and volumes can be com-
puted directly. Alternatively, partial molar enthalpies and
volumes can be computed by constructing histograms of H,
H/V, V and 1/V in λ-space. The CFCMC method can be com-
bined with other simulation techniques to further improve
efficiency of molecule exchanges for systems in which direc-
tionality is important. For instance, the combination of the
CFCMC method with Configurational-Bias Monte Carlo can
be used to improve efficiency of molecule insertions of long
chained hydrocarbons in dense phases or porous media [66,
67, 121, 122, 157, 192, 195]. Recently, Dubbeldam et al.
implemented the CFCMC method (and the CB/CFCMC
method) in the RASPA software package [74, 75]. This
implementation allows for efficient reaction and phase

equilibria calculations, e.g. see Refs. [45, 64, 121–123, 187,
190, 192, 194–196, 198–201, 211, 213]. Recent advances in
the CFCMC methodology are incorporated in Brick-CFCMC
an open-source molecular simulation software [62], developed
at the Engineering Thermodynamics group at Process and
Energy Department of Delft University of Technology. Brick-
CFCMC [62] is specialised for simulations of phase equilibria
in the liquid or gas phases. In Ref. [62], the capabilities of the
software are demonstrated by investigating the esterification
reaction of methanol with acetic acid in a two-phase system.
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