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ABSTRACT: Mutual diffusion coefficients can be successfully
predicted with models based on the Darken equation. However,
Darken-based models require composition-dependent self-diffusion
coefficients which are rarely available. In this work, we present a
predictive model for composition-dependent self-diffusion coefficients
(also called tracer diffusion coefficients or intradiffusion coefficients) in
nonideal binary liquid mixtures. The model is derived from molecular
dynamics simulation data of Lennard-Jones systems. A strong
correlation between nonideal diffusion effects and the thermodynamic
factor is observed. We extend the model by McCarty and Mason (Phys.
Fluids 1960, 3, 908−922) for ideal binary gas mixtures to predict the
composition-dependent self-diffusion coefficients in nonideal binary liquid mixtures. Our new model is a function of the
thermodynamic factor, the self-diffusion coefficients at infinite dilution, and the self-diffusion coefficients of the pure substances,
which are readily available. We validate our model with experimental data of 9 systems. For both Lennard-Jones systems and
experimental data, the accuracy of the predicted self-diffusion coefficients is improved by a factor of 2 compared to the
correlation of McCarty and Mason. Thus, our new model significantly expands the practical applicability of Darken-based
models for the prediction of mutual diffusion coefficients.

1. INTRODUCTION

Diffusion in liquids plays an important role in many industrial
and environmental processes.1 Engineers are in need of precise
diffusion process calculations to design, e.g., separation
processes and chemical reactors. The accurate quantitative
description of diffusion processes has been a challenge to
scientists for decades.2,3 There is still a continuing demand for
diffusion coefficients as input parameters to these models.4

Although experimental methods are continuously improv-
ing,5−10 the measurement of diffusion coefficients in liquids is
usually time-consuming and expensive.11,12

Molecular dynamics (MD) simulations are a powerful tool
to complement or even substitute diffusion experiments.13−15

However, MD simulations are still computationally too
expensive to be performed in the framework of process
simulations. Therefore, predictive models for diffusion
coefficients are needed.11,16−18 The aim is to reduce the
required data to a minimal amount, e.g., to viscosities or
diffusion coefficients at infinite dilution.
Most practical applications require the knowledge of mutual

dif fusion coef f icients, which describe the net flow of molecules
due to a driving force. Numerous models have been proposed
to predict the composition dependence of mutual diffusion
coefficients in liquids.11,16−20 Within these models, two main
classes can be identified.

The first class of models is based on the Vignes equation:21

Đ Đ Đ( ) ( )x x x x
12 12

1
12

11 1 2 2= → →
(1)

Here, Đ12 is the (mutual) Maxwell−Stefan (MS) diffusion
coefficient, x1 and x2 are the mole fractions of components 1
and 2, and Đ12

x1→1 and Đ12
x2→1 are the MS diffusion coefficients at

infinite dilution. The Vignes equation is very popular since it
only requires diffusion coefficients at infinite dilution as input
for which many predictive models are available, such as the
Wilke−Chang equation.19 The Vignes equation is purely
empirical and applicable to binary systems only. However,
extensions of the Vignes equation to multicomponent mixtures
have been proposed.16,18

The second class of models is based on the Darken
equation:22

Đ Đ x D x D12 Darken 2 1,self 1 2,self= = + (2)

Here, D1,self and D2,self are the composition-dependent self-
dif fusion coef f icients (also called tracer diffusion coefficients or
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intradiffusion coefficients) of components 1 and 2 in the
mixture, which describe the mean-squared displacements of
individual molecules in a mixture. The Darken equation has
been extended to multicomponent mixtures by Liu et al.18,23 In
contrast to the Vignes equation (eq 1), the Darken equation
has a physical basis and can be derived from statistical-
mechanical theory when velocity cross-correlations between
the molecules of a mixture are neglected, i.e., when the
molecules in the mixture move independently and not in
groups or clusters.18 Hence, the Darken equation is suitable for
ideal mixtures, but not for strongly nonideal mixtures.
A modified Darken equation for nonideal binary mixtures

has therefore been proposed by D’Agostino et al.24 and
Moggridge25 which is based on critical point scaling laws:26−29

Đ Đ12 Darken
0.36= Γ−

(3)

Here, the Darken equation is corrected by a power function of
the thermodynamic factor Γ, which is a measure for the
nonideality of the system (cf. eq 8).3 In the rest of the paper,
eq 3 is called the “Moggridge equation”. The Moggridge
equation has been tested and successfully validated for a wide
range of nonideal liquid mixtures.15,24,25,30 The Moggridge
equation is not applicable to mixtures with dimerizing
components. Moggridge31 proposed a further modification of
eq 3 for mixtures with dimerizing components. Zhu et al.32

introduced local mole fractions into the Moggridge equation.
Thereby, mixtures with and without dimerizing species could
be successfully described. Recently, Allie-Ebrahim et al.33

suggested an extension of the Moggridge equation to
multicomponent systems.
Despite its sound physical background, the Darken equation

(and thereby the Moggridge equation) is generally seen as “of
little practical use due to the fact that it relies on the self-
diffusion coefficients [Di,self] in the mixture, which are rarely
available”.34 To avoid the use of Di,self, modifications of the
Darken equation have been proposed which use self-diffusion
coefficients at infinite dilution Di,self

xj≠i→1 = Dij
xj≠i→1 = D12

∞,35 include
additional, system-dependent modification factors,36 or in-
corporate the shear viscosity,37,38 to name a few. Similar
modifications have been applied to the Vignes equation to
extend the applicability to a wider range of nonideal systems.39

However, the applicabilities of the (modified) Vignes
equations and of those modified Darken equations that avoid
the use of Di,self are very case-specific.

3,19 It was concluded that
“no single correlation [that avoids the use of composition-
dependent self-diffusion coefficients Di,self] is always satisfac-
tory for estimating the concentration effect on liquid diffusion
coefficients”.19 Therefore, the composition-dependent self-
diffusion coefficients should preferentially not be replaced in
the Darken-based models.
Thus, reliable predictions of composition-dependent self-

dif fusion coef f icients Di,self are needed. Existing predictive
models for Di,self predict Di,self from the self-diffusion
coefficients at infinite dilution, Di,self

xj→1. The self-diffusion
coefficients Di,self

xj→1 can be obtained, e.g., from NMR measure-
ments, diffusion measurements with radioactive tracers, or
molecular dynamics simulations. In addition, the self-diffusion
coefficients Di,self

xj≠i→1 can be estimated with predictive models19,40

or from the binary mutual diffusion coefficients at infinite
dilution:41 Di,self

xj≠i→1 = Dij
xj≠i→1 = D12

∞. Extensive data sets on
experimental self-diffusion coefficients at infinite dilution,
Di,self

xj≠i→1, do already exist.42

Carman and Stein43 proposed the semiempirical relation

D
D

i
i
x x

,self,pred
,self

1 1j jη
η

=
→ →

(4)

for binary systems, where Di,self,pred is the predicted value of
Di,self, η

xj→1 is the viscosity of pure component j, and η is the
viscosity of the mixture. Equation 4 is based on the Stokes−
Einstein equation19 and works well for ideal mixtures.43 For
nonideal mixtures, large deviations occur.15

For nonideal mixtures, Krishna and van Baten44 suggest the
empirical relation

D wDi
j

n

j i
x

,self,pred
1

,self
1j∑=

=

→

(5)

where wj is the mass fraction of component j. Equation 5 was
successfully tested for linear alkanes44 and mixtures with
thermodynamic factors 0.55 ≤ Γ ≤ 1.15 For strongly nonideal
mixtures with thermodynamic factors Γ < 0.55, large deviations
were observed.15

Based on derivations of Curtiss and Hirschfelder45 and
Hirschfelder and Curtiss,46 McCarty and Mason47 and Miller
and Carman48 derived the relation

D
x

D
x

D
i

1
, 1, 2

i i
x

i
x

,self,pred

1

,self
1

2

,self
11 2

= + =→ →
(6)

for binary gas mixtures. In the rest of the paper, eq 6 will be
called the “McCarty−Mason equation”. The McCarty−Mason
equation is based on the assumption of an approximately
constant mutual diffusion coefficient, which is an often valid
assumption for gases. It is exact in the limit of infinite
dilution.18 McCarty and Mason47 and Miller and Carman48

tested the McCarty−Mason equation successfully with data
from gas diffusion experiments. Liu et al.18 proposed the use of
the McCarty−Mason equation for weakly nonideal liquids.
Satisfying predictions of self-diffusion coefficients in weakly
nonideal liquids were observed.15,18,23 However, eq 6 performs
poorly for strongly nonideal mixtures.15

Overall, the predictive models for composition-dependent
self-diffusion coefficients (eqs 4, 5, and 6) work well for
approximately ideal mixtures, but there is a need for predictive
equations for nonideal mixtures. For mutual diffusion
coefficients, the successful performance of the Moggridge
equation (eq 3) shows that the inclusion of a function of the
thermodynamic factor Γ into the ideal mutual diffusion
equation (the Darken equation, eq 2) can be a sufficient
method to take nonidealities into account. The question arises
whether it is also possible to correct the ideal self-diffusion
equation (the McCarty−Mason equation, eq 6) with a
function of the thermodynamic factor Γ to expand its
applicability to nonideal mixtures.
In this work, we study the composition dependence of

mutual and self-diffusion coefficients in binary nonideal liquid
mixtures. We investigate the correlation of nonideal diffusion
effects with the thermodynamic factor. In section 2, we
motivate our analysis from a theoretical point of view. Since
experimental data rarely provide a full set of transport data and
thermodynamic properties, we use MD simulations as the basis
for our analysis (section 3). In section 4.1, we assess the
performance of the Moggridge equation (eq 3) for the
prediction of mutual diffusion coefficients. In section 4.2.1, we
analyze the nonideal behavior of self-diffusion coefficients and
derive an improved model for the prediction of self-diffusion
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coefficients in strongly nonideal binary liquid mixtures. In
section 4.2.2, the improved model is tested and validated with
experimental data of molecular systems. Conclusions of this
study are drawn in section 5.

2. THEORY AND METHOD
Commonly, two approaches are used to describe mutual
diffusion: Fick’s approach and the Maxwell−Stefan (MS)
approach.3,49 Fick’s approach is phenomenological and
requires the knowledge of Fick diffusion coefficients D12 and
of composition gradients. It is therefore often used for practical
applications. The MS approach is physically motivated and can
be derived from irreversible thermodynamics.3,50 It requires
the knowledge of MS diffusion coefficients Đ12 and of chemical
potential gradients. Hence, the MS approach separates
thermodynamic properties and transport properties. It is
therefore often used for predictive modeling of diffusion
coefficients.
Since both Fick’s and the MS approach describe the same

phenomenon, they are linked to each other. For a binary
mixture

D Đ12 12= Γ (7)

holds, where Γ is the thermodynamic factor. The MS diffusion
coefficient Đ12 describes the molecular friction forces, whereas
the thermodynamic factor Γ contains the thermodynamic
information.
For a binary mixture, the thermodynamic factor Γ is defined

as3

i
k
jjjjj

y
{
zzzzzx

x
x

x x
1

ln
1

ln ln

T p T p

1
1

1 , ,
1

1

1

1

2 ,

γ γ γ
Γ = +

∂
∂

= +
∂

∂
−

∂
∂

Σ

(8)

Here, γ1 is the activity coefficient of component 1, T and p
denote temperature and pressure, respectively, and Σ indicates
that the closing condition ∑i xi = 1 has to be considered. For
ideal mixtures and pure substances, Γ = 1 holds by definition.
Thus, MS diffusion coefficients and Fick diffusion coefficients
are equal for ideal mixtures, and at infinite dilution. Mixtures
with a thermodynamic factor 0 < Γ < 1 favor attractive
interactions between the same species over interactions
between different species. If Γ approaches zero, the mixture
is approaching phase separation. Mixtures with Γ > 1 exhibit
associating behavior.
The thermodynamic factor Γ can be calculated from Gibbs

energy models3 or equations of state.44 In molecular
simulations, the thermodynamic factor can be calculated
from Kirkwood−Buff integrals51 or the permuted Widom
test particle insertion method.52 In this work, the thermody-
namic factors are calculated from Kirkwood−Buff integrals
Gij:

13

i
k
jjj

y
{
zzzV

x x N G G G1
1

( 2 )1 2 11 22 12

1

Γ = + + −
−

(9)

Here, V is the volume of the simulation box and N is the total
number of particles. For details, the reader is referred to
Milzetti et al.,53 Ben-Naim,54 and Jamali et al.55

The MS diffusion coefficient can be expressed by velocity
correlation functions. For a binary mixture, the MS diffusivity
Đ12 equals

23

´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

´ ≠ÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖÖ

Đ x D x D

Đ

x x N

Đ

(CC CC 2CC )

12 2 1,self 1 2,self

Darken

1 2 11 22 12

Cross

= +

+ + −

(10)

The MS diffusion coefficient Đ12 is composed of two parts: an
(ideal) Darken diffusion coefficient ĐDarken containing the self-
diffusion coefficients Di,self (which are velocity autocorrela-
tions), and a nonideal diffusion coefficient ĐCross containing
the velocity cross-correlations CCij between different particles
of components i and j. For approximately ideal mixtures with
weak molecular interactions, the velocity cross-correlations
CCij are negligible compared to the self-diffusion coefficients
Di,self and the MS diffusion coefficient is approximately the
Darken diffusion coefficient: Đ12 ≈ ĐDarken. For nonideal
mixtures with strong molecular interactions, the nonideal
diffusion coefficient ĐCross can be in the same order of
magnitude as the Darken diffusion coefficient ĐDarken. Thus,
consideration of ĐCross is essential for nonideal mixtures.
A number of works have studied the composition depend-

ence of velocity cross-correlations CCij.
56−67 Weingar̈tner57

observed that velocity cross-correlations CCij show a similar
composition dependence as Kirkwood−Buff coefficients Gij.
However, a derivation of a relationship between velocity cross-
correlations CCij and the thermodynamic factor Γ is not
straightforward and no conclusive answer was found. Still, it is
interesting to note that Weingar̈tner’s observation in fact
suggests a connection between the nonideal diffusion
coefficient ĐCross and the thermodynamic factor Γ: A
comparison of eqs 9 and 10 reveals a structural similarity in
the formulations of ĐCross and Γ. Similarly, the Moggridge
equation (eq 3) also suggests a correlation between the relative
nonideality ĐCross/ĐDarken and Γ: insertion of the Moggridge
equation (eq 3) into eq 10 leads to

Đ
Đ

Đ Đ
Đ

Đ
Đ

(11)

1 (12)

1 (13)

Cross

Darken

12 Darken

Darken

12

Darken

0.36

=
−

= −

= Γ −−

Thus, the Moggridge equation (eq 3) in fact relates the
nonideal diffusion coefficient ĐCross to the ideal Darken
diffusion coefficient ĐDarken and the thermodynamic factor Γ.
The question arises whether the relation between nonideal

diffusion effects and the thermodynamic factor can also be
observed for self-diffusion coefficients. The McCarty−Mason
equation (eq 6) resembles the ideal mixing rule for
composition-dependent self-diffusion coefficients. In an
analogy to the relative nonideality ĐCross/ĐDarken of the mutual
diffusion coefficient (eq 11), we define the relative deviation
ΔDi,self,rel between the real self-diffusion coefficient Di,self and
the predicted self-diffusion coefficient Di,self,pred by the
McCarty−Mason equation (eq 6),

D
D D

Di
i i

i
,self,rel

,self ,self,pred

,self
Δ =

−

(14)

which is a measure for nonideal effects of self-diffusion. If the
relative deviation ΔDi,self,rel can be described as a function f(Γ)
of the thermodynamic factor, predictions of the McCarty−
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Mason equation (eq 6) can be corrected to obtain a predictive
equation for nonideal mixtures:

D
D D

D
f ( )i

i i

i
,self,rel

,self ,self,pred

,self
Δ =

−
= Γ

(15)
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(1 ( )) (16)
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x

i
x

,self ,self,pred

1

,self
1

2

,self
11 2

= − Γ

= + − Γ→ →

In this work, we investigate correlations between both the
relative nonideality ĐCross/ĐDarken of mutual diffusion coef-
ficients and the relative deviation ΔDi,self,rel of self-diffusion
coefficients with the thermodynamic factor Γ. We expect the
thermodynamic factor to cover all nonidealities such that there
is no need for further correction factors such as viscosity. To
have a full and consistent set of transport data and
thermodynamic data, we use MD simulations of
Lennard−Jones (LJ) systems for our analysis. The correlations
are then tested with experimental data of molecular systems.

3. SIMULATION DETAILS
Our analysis is based on MD simulations of LJ systems. In the
following, we provide a short overview of the specifications of
the simulations. For more details and numeric results, the
reader is referred to Jamali et al.55

We performed 250 distinct MD simulations of binary LJ
systems. All parameters and properties of these simulations are
reported in reduced units. The parameters of the first species
serve as base units: diameter σ1 = σ = 1, interaction energy ϵ1 =
ϵ = 1, and mass m1 = m = 1. The parameters of the second
species and the adjustable parameter kij of the Lorentz−
Berthelot mixing rule are listed in Table 1. To cover a broad

range of nonidealities, the ratios of the parameters of the first
and second species are varied over a large range. The reduced
temperature T and pressure p are T = 0.65 and p = 0.05. For
each specified LJ system, two different types of simulations
were performed: simulations to determine transport properties
and simulations to determine thermodynamic factors.
Transport properties were calculated from equilibrium MD

simulations with 200 million time steps with a time step length
of 0.001 in reduced units. The transport coefficients were
calculated from time-correlation functions. The Einstein
relations were used to sample the time correlations; i.e., the

displacements of particles were sampled over time.68,69 The
self-diffusion coefficients follow from13

r rD
Nt

tlim
1

6
( ( ) (0))i

t i j

N

j i j i,self
1

, ,
2

i

∑= −
→∞ = (18)

where t is the correlation time, Ni is the number of molecules
of species i, and rj,i is the position of the jth molecule of species
i. The angle brackets denote an ensemble average. The velocity
cross-correlations CCii and CCij follow from13
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−

→∞ =
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where N is the total number of molecules in the mixture.
The values of the transport coefficients depend on the box

size of the MD simulations. More precisely, the transport
coefficients scale linearly with the inverse of the box size, 1/L.
To correct for these finite-size effects, each LJ system was
simulated for four different system sizes (500, 1000, 2000, and
4000 particles). Subsequently, the transport coefficients were
extrapolated linearly to an infinite box size, i.e., 1/L → 0, to
obtain the transport coefficients in the thermodynamic limit.
For details on the finite-size corrections with numeric results
and a comparison to analytic finite-size corrections, the reader
is referred to Jamali et al.55

For the calculation of thermodynamic factors, equilibrium
MD simulations with large systems consisting of 25 000
particles were performed. The thermodynamic factors were
calculated from Kirkwood−Buff coefficients (cf. eq 9). The
Kirkwood−Buff coefficients were calculated from integrals of
the radial distribution functions (RDFs). Both the RDFs and
the Kirkwood−Buff integrals were corrected for finite-size
effects using the method of Ganguly and van der Vegt70 and
Milzetti et al.53 for the RDFs, and the method of Krüger et
al.,51 Dawass et al.,71 and Krüger and Vlugt72 for the
Kirkwood−Buff integrals. Each simulation for the calculation
of thermodynamic factors was performed for 10 million time
steps with a time step length of 0.001 in reduced units.
All simulations for both transport properties and thermody-

namic factors were repeated at least five times with varying
seed numbers. Thereby, statistical mean values and 95%
confidence intervals were evaluated.

4. RESULTS AND DISCUSSION
The MD simulations provide a full set of transport data and
thermodynamic properties. Thereby, the MD simulations
enable a comprehensive analysis of nonideal effects of mutual
and self-diffusion coefficients. In section 4.1, we analyze the
correlation between the relative nonideality ĐCross/ĐDarken of
mutual diffusion coefficients and the thermodynamic factor Γ.

Table 1. Specifications of the Studied LJ Systemsa

specification values

total number of particles 500, 1000, 2000, 4000
independent simulations 10, 10, 5, 5
x1 0.1, 0.3, 0.5, 0.7, 0.9
ϵ2/ϵ1 1.0, 0.8, 0.6, 0.5
σ2/σ1 1.0, 1.2, 1.4, 1.6
m2/m1 (σ2/σ1)

3

kij 0.05, 0.0, −0.3, −0.6
aLJ particle of type 1 has σ1 = σ = 1.0, ϵ1 = ϵ = 1.0, and mass = m1 =
1.0 in reduced units.68 kij is an adjustable parameter to the Lorentz−
Berthelot mixing rule k(1 )ij ij1 2ϵ = ϵ ϵ − , controlling the non-
ideality of the systems.
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We assess the performance of the Moggridge equation (eq 3)
and confirm its validity for a wide range of nonideal mixtures.
In section 4.2, we investigate the correlation between the
relative deviation ΔDi,self,rel of self-diffusion coefficients with the
thermodynamic factor Γ. We derive an improved model for the
prediction of composition-dependent self-diffusion coefficients
in nonideal binary mixtures (section 4.2.1) and validate our
model with experimental data (section 4.2.2).
4.1. Mutual Diffusion Coefficients. The nonideality of

mutual MS diffusion coefficients Đ12 is represented by the
relative nonideality ĐCross/ĐDarken (eq 11). According to eq 13,
we can assume a correlation between the relative nonideality
ĐCross/ĐDarken and the thermodynamic factor Γ. Figure 1 shows
the relative nonideality ĐCross/ĐDarken as a function of the
thermodynamic factor Γ. The data of our MD simulations are a
continuous function of the thermodynamic factor Γ. For the
considered LJ systems, the thermodynamic factor is in the
range 0.28 < Γ < 9 and the relative nonidealities are in the
range −0.34 < ĐCross/ĐDarken < 0.47; i.e., the MS diffusion
coefficient Đ12 differs from the ideal Darken diffusion
coefficient by up to 47%. For ideal mixtures with equal
molecular interactions (Γ = 1), the velocity cross-correlations
vanish and thereby the relative nonideality vanishes: ĐCross/
ĐDarken = 0. For self-associating mixtures (Γ < 1), the velocity
cross-correlations CCii between particles of the same
component i become predominant and the relative nonideality
ĐCross/ĐDarken is positive. For mixtures with associating
behavior between unlike particles of different components i
and j, the velocity cross-correlations CCij become predominant
and the relative nonideality ĐCross/ĐDarken is negative.
To validate our MD simulation data, we compare it to

experimental data from the literature.15,24,25,32,57,62,66,73−100

Table S1 in the Supporting Information provides a detailed list

of references for the experimental data used in this work. The
experimental data sets consist of mutual Fick diffusion
coefficients D12, self-diffusion coefficients Di,self, and thermody-
namic factors Γ. The self-diffusion coefficients Di,self originate
from NMR measurements or diffusion measurements with
radioactive tracers; the thermodynamic factors Γ are either
reported directly in the literature or calculated from Redlich−
Kister (RK) and/or NRTL parameters reported in the
literature. The relative nonideality ĐCross/ĐDarken is calculated
from the experimental data sets via combination of eqs 10 and
7:

Đ
Đ

Đ Đ
Đ

D
Đ

D
x D x D

(21)

/
1 (22)

/
1 (23)

Cross

Darken

12 Darken

Darken

12

Darken

12

2 1,self 1 2,self

=
−

=
Γ

−

=
Γ

+
−

The thermodynamic factors of the experimental data are in
the range 0 < Γ < 2. Figure 1 provides an inset for the range 0
< Γ < 2. Overall, our MD data agree well with the experimental
data. Deviations can be observed only for mixtures with
dimerizing species, i.e., ethanol and methanol for the current
data set. For dimerizing species, the relative nonideality ĐCross/
ĐDarken is larger in comparison to nondimerizing species. This
special behavior of dimerizing species was also observed by
Moggridge31 and is also observed for self-diffusion coefficients
below (cf. section 4.2.2).
Figure 1 also shows the predictions of the Moggridge

equation (cf. eqs 3 and 13). In the typical range of
thermodynamic factors of molecular systems, 0 < Γ < 2, the

Figure 1. Relative nonideality ĐCross/ĐDarken of mutual diffusion coefficients as a function of the thermodynamic factor Γ. Outer figure: Data from
MD simulations (black crosses) vs predictive Moggridge equation (eq 3, red dashed line). Inset: Experimental data vs predictive Moggridge
equation (eq 3, red dashed line). Stars: Experimental data with thermodynamic factors calculated with Redlich−Kister (RK). Diamonds:
Experimental data with thermodynamic factors calculated with NRTL. Plus symbols: Experimental data with thermodynamic factors given in the
literature. Statistical uncertainties of the MD data are given in Jamali et al.55 References for the experimental data are provided in Table S1 in the
Supporting Information.
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Moggridge equation performs well and agrees with our MD
data as well as with most of the experimental data. Again,
mixtures with dimerizing species show larger deviations from
the Moggridge equation. For large thermodynamic factors Γ >
2, our MD data suggest a different functional relation than the
Moggridge equation with less negative relative nonidealities
ĐCross/ĐDarken. To identify possible reasons for the deviations
between MD data and the Moggridge equation, we examined
the distance of the MD simulations state points to their critical
points. Fifteen out of 250 simulations have state points close to
their critical points. However, these 15 simulations have
thermodynamic factors Γ < 1 and their relative nonidealities
ĐCross/ĐDarken are well predicted by the Moggridge equation. In
contrast, deviations are observed between the relative non-
idealities ĐCross/ĐDarken of the MD simulations and the
Moggridge equation for large thermodynamic factors (Γ >
5). These systems are far from their critical points. Therefore,
the closeness of a system’s state point to its critical point can
be excluded as a possible reason for the observed deviations
between the MD data and the predictions of the Moggridge
equation. However, for practical applications with typical
thermodynamic factors 0 < Γ < 2, the performance of the
Moggridge equation is excellent.
4.2. Self-Diffusion Coefficients. The nonideality of self-

diffusion coefficients Di,self is represented by the relative
deviation ΔDi,self,rel (eq 14). For ideal mixtures, we expect
relative deviations ΔDi,self,rel = 0 from the predictions of the
McCarty−Mason equation (eq 6). For nonideal mixtures, we
assume that a modification of the McCarty−Mason equation
with a function of the thermodynamic factor can account for
nonideal effects (cf. eq 17). In section 4.2.1, we analyze the
correlation between the relative deviation ΔDi,self,rel and the
thermodynamic factor Γ in nonideal LJ systems and derive a
modified McCarty−Mason equation for nonideal mixtures. In

section 4.2.2, we validate the modified McCarty−Mason
equation with experimental data.

4.2.1. Self-Diffusion Coefficients of LJ Systems. Figure 2
(top) shows an example of composition-dependent self-
diffusion coefficients D1,self and D2,self of a binary LJ system
with pronounced nonideality. The specification of the LJ
system is ϵ2/ϵ1 = 0.6, σ2/σ1 = 1.2, m2/m1 = 1.728, and kij =
−0.6. The extreme value of the binary parameter kij = −0.6
leads to a pronounced nonideal behavior of the mixture.
Thereby, a possible relationship between the relative non-
ideality ΔDi,self,rel and the thermodynamic factor Γ is clearly
revealed.
In a first step, we test the performance of the McCarty−

Mason equation (eq 6). The McCarty−Mason equation
requires the prior knowledge of self-diffusion coefficients Di,self

xj→1

at infinite dilution and of the pure substances. In MD
simulations, statistical uncertainties are very large for mixtures
approaching infinite dilution of one of the components.
Therefore, the MD simulations have been performed for
mixtures with at least 10 mol % of each species, i.e., x1 = [0.1,
0.3, 0.5, 0.7, 0.9]. To obtain the values of D1,self

xj→1, we performed
a smoothing fit with a quadratic polynomial function to the
self-diffusion coefficients D1,self. Figure 2 (top) shows the
smoothing fit as well as the predictions of the McCarty−
Mason equation. As expected, the McCarty−Mason prediction
shows large deviations. However, the curvature of the
composition dependence is retrieved.
Figure 2 (bottom) shows the composition dependence of

the relative deviation ΔD1,self,rel (eq 14) of the predictions
made by the McCarty−Mason equation. Large relative
deviations up to 70% are observed. Figure 2 (bottom) also
shows the composition dependence of the thermodynamic
factor minus 1, Γ − 1. The term Γ − 1 is a measure for the
deviation of the mixture from an ideal mixture. In the present

Figure 2. Composition-dependent self-diffusion coefficients Di,self, thermodynamic factors Γ, and relative deviations ΔDi,self,rel of a binary LJ system
with specification ϵ2/ϵ1 = 0.6, σ2/σ1 = 1.2, m2/m1 = 1.728, and kij = −0.6. Left, species 1; right, species 2. Top figures: simulation results of
composition-dependent self-diffusion coefficients Di,self (blue stars); smoothing fit to the simulation results (blue dashed line); predictions of the
McCarty−Mason equation (eq 6) (red circles/line); predictions of the modified McCarty−Mason equation (eq 25) (green diamonds/line). The
error bars of Di,self are smaller than the symbols. Bottom figures: Composition dependence of the thermodynamic factor Γ − 1 (blue stars/line, left
axis) and composition dependence of the relative deviation ΔDi,self,rel between the self-diffusion coefficients and the predictions of the McCarty−
Mason equation (eq 6) (red circles/line, right axis) and the modified McCarty−Mason equation (eq 25) (green diamonds/line, right axis). A clear
correlation between Γ − 1 and ΔDi,self,rel can be observed. The error bars of Γ − 1 are smaller than the symbols in most cases. A full set of plots for
all considered LJ systems is provided in the Supporting Information.
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case, Γ − 1 takes values of up to 4.2; i.e., the LJ system is
highly nonideal.
We can now compare the composition dependencies of Γ −

1 and ΔDi,self,rel. Figure 2 (bottom) suggests a strong
correlation between ΔDi,self,rel and Γ − 1: Large deviations of
a mixture from ideal behavior lead to large relative deviations
of the McCarty−Mason prediction.
To study the correlation between ΔDi,self,rel and Γ − 1 for the

full set of LJ systems, we plot ΔDi,self,rel as a function of Γ − 1.
Figure 3a shows the plot for the first species (plots for the

second species are provided in the Supporting Information). A
general trend ΔD1,self,rel ∝ Γ − 1 can be observed. However, the
data scatters for molar mass ratios m2/m1 > 2. As a first
approximation, we restrict our analysis to systems with molar
mass ratios m2/m1 < 2. Figure 3b shows the relative deviation
ΔD1,self,rel as a function of Γ − 1 for all LJ systems with molar
mass ratios m2/m1 < 2. A clear correlation ΔD1,self,rel ∝ Γ − 1
can be observed. For the full range of thermodynamic factors 0
< Γ < 7, the McCarty−Mason predictions show large
deviations of up to 130%. The root-mean-square error of
ΔDi,self,rel is RMSE = 35%; i.e., the McCarty−Mason
predictions deviate by 35% on average. However, molecular
systems typically have thermodynamic factors in the range 0 <
Γ < 2 (cf. section 4.1). Still, even in this molecular systems

range (0 < Γ < 2), the McCarty−Mason predictions have an
RMSE of 10%.
To improve the McCarty−Mason predictions, we introduce

a linear fit of ΔDi,self,rel as a function of Γ following eq 15.
Fitting both ΔD1,self,rel and ΔD2,self,rel in the typical range of
thermodynamic factors 0 < Γ < 2 results in the function (cf.
Figure 3b)

f ( ) 0.2807( 1)Γ = − Γ − (24)

Insertion of eq 24 into eq 17 leads to an improved predictive
equation for composition-dependent self-diffusion coefficients:
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In the rest of the paper, eq 25 will be called the “modified
McCarty−Mason equation”. Using the modified McCarty−
Mason equation, the accuracy of the predictions is doubled
compared to the McCarty−Mason predictions: The RMSE
halves from 10 to 5% for 0 < Γ < 2.
Figure 2 shows the improved predictions of the modified

McCarty−Mason equation for the exemplary LJ system
considered above. Since average deviations can be misleading
because the error always goes to zero for the pure component
limits, it is also important to quantify maximum errors. The
maximum relative deviation decreases from |ΔD1,self,rel| = 70%
to |ΔD1,self,rel| = 12% if the modified McCarty−Mason equation
is used; i.e., the predictions are improved by a factor up to 0.7/
0.12 = 5.8. A full set of plots for all considered LJ systems is
provided in the Supporting Information.

4.2.2. Self-Diffusion Coefficients of Molecular Systems.
The modified McCarty−Mason equation (eq 25) was obtained
from MD data of LJ systems. To evaluate the practical
performance of the modified McCarty−Mason equation, it has
to be tested with experimental data. Figure 4a shows the
relative deviation ΔD1,self,rel of the McCarty−Mason equation
(eq 6) as a function of Γ − 1. The correlation between
ΔD1,self,rel and Γ − 1 is not as clear as for LJ systems (cf. Figure
3); even ideal mixtures (Γ − 1 = 0) have relative deviations
ΔD1,self,rel ≠ 0. Still, the linear fit (eq 24), which represents the
predictions of the modified McCarty−Mason equation,
captures a major part of the experimental data, but some
molecular systems show large deviations. In particular, the
systems water−N-methylpyridine and methanol−carbon tetra-
chloride show large deviations with completely different
dependencies of ΔD1,self,rel on Γ − 1. This plot suggests that
it may be even impossible to derive a model based on the
thermodynamic factor Γ only that can capture all molecular
systems.
However, the modified McCarty−Mason equation was

derived for systems with molar mass ratios M2/M1 < 2. In
addition, it was shown in section 4.1 that mixtures with
dimerizing species need a separate analysis. Excluding systems
with M2/M1 > 2 and systems with dimerizing species results in
the remaining data set shown in Figure 4b. For the remaining
data set, a clear correlation between ΔD1,self,rel and Γ − 1 is
observed, which agrees with the linear fit (eq 24) of the
modified McCarty−Mason equation. The RMSE of the
McCarty−Mason predictions is 11%. If the modified
McCarty−Mason equation is used, the RMSE decreases to
5%. Hence, the deviations of the predictions made by the
modified McCarty−Mason equation are 0.11/0.05 > 2 times
lower.

Figure 3. Relative deviations ΔD1,self,rel of the McCarty−Mason
predictions (eq 6) of self-diffusion coefficients as a function of the
thermodynamic factor Γ for LJ systems. (a) ΔD1,self,rel for all LJ
systems, color-coded by the molar mass ratios m2/m1. (b) ΔD1,self,rel
for LJ systems with molar mass ratios m2/m1 < 2 and best fit of eq 15
(black line) for 0 < Γ < 2 (indicated by the vertical dashed line). Plots
for the second species are provided in the Supporting Information.
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The improvement in the prediction of self-diffusion
coefficients can also be visualized in terms of the composition
dependence: Figure 5 shows experimental and predicted
composition-dependent self-diffusion coefficients of the
exemplary systems nitrobenzene−hexane and cyclohexane−
benzene (a full set of plots for all considered molecular systems
is provided in the Supporting Information). For the system
nitrobenzene−hexane, the maximum relative deviation
|ΔD1,self,rel| of the McCarty−Mason prediction is ≈30% and
the maximum relative deviation |ΔD1,self,rel| of the modified
McCarty−Mason prediction is ≈5%. Hence, the deviations of
the predictions made by the modified McCarty−Mason
equation are 0.30/0.05 ≈ 6 times lower. For the system
cyclohexane−benzene, using the modified version of the
McCarty−Mason equation decreases the maximum relative
deviation |ΔD1,self,rel| from 10 to 4%, which corresponds to an
improvement by a factor of 0.10/0.04 ≈ 2.
Hence significant improvements in the prediction of

composition-dependent self-diffusion coefficients of nonideal
binary liquid mixtures are obtained by use of the modified
McCarty−Mason equation. Combining the modified
McCarty−Mason equation (eq 6) with the Moggridge
equation (eq 3) and eq 7 leads to the following model for
the prediction of composition-dependent binary Fick diffusion
coefficients:

D x D x D( )12 2 1,self 1 2,self
0.64= + Γ (26)
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Thus, to predict composition-dependent Fick diffusion
coefficients of binary mixtures with molar mass ratios M2/M1

< 2 and without dimerizing species, we need only the self-
diffusion coefficients at infinite dilution Di,self

xj≠i→1 = Dij
xj≠i→1 = D12

∞

and the self-diffusion coefficients of the pure substances Di,self
xi→1

as well as the thermodynamic factor Γ of the mixture.

5. CONCLUSIONS

The reliable prediction of composition-dependent mutual
diffusion coefficients has been a challenge to scientists for
decades. For ideal mixtures, the physically based Darken
equation holds. For nonideal mixtures, semiempirical mod-
ifications of the Darken equation have been developed.
However, Darken-based models rely on the knowledge of
composition-dependent self-diffusion coefficients which are
rarely available.
Therefore, predictions of composition-dependent self-

diffusion coefficients are needed. In this work, we studied
the composition dependence of mutual and self-diffusion
coefficients in nonideal binary liquid mixtures. The basis of our
analysis were data of Lennard-Jones (LJ) systems from
molecular dynamics simulations which provide insight into
the full set of transport data and thermodynamic properties.
For both mutual and self-diffusion, strong correlations between
nonideal diffusion effects and the thermodynamic factor were
observed. The existing modification of the Darken equation by
D’Agostino et al.24 and Moggridge25 was confirmed to
accurately predict composition-dependent mutual diffusion
coefficients for a wide range of nonideal mixtures with typical
thermodynamic factors (0 < Γ < 2). For mixtures with very
large thermodynamic factors (Γ > 2), the data of the LJ
systems suggest deviations.

Figure 4. Relative deviations ΔD1,self,rel of the McCarty−Mason prediction (eq 6) as a function of the thermodynamic factor Γ for molecular
systems (symbols) and linear fit of ΔD1,self,rel derived from LJ systems (black line, cf. eq 24). Stars: Experimental data with thermodynamic factors
calculated with Redlich−Kister (RK). Diamonds: Experimental data with thermodynamic factors calculated with NRTL. Plus symbols:
Experimental data with thermodynamic factors reported in the literature. (a) ΔD1,self,rel for all considered molecular systems. (b) ΔD1,self,rel for
molecular systems with molar mass ratios M2/M1 < 2 and without dimerizing species. Plots for the second species are provided in the Supporting
Information.
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Based on the predictive model of McCarty and Mason47 for
ideal binary gas mixtures, we developed an improved model for
the prediction of composition-dependent self-diffusion coef-
ficients in nonideal binary liquid mixtures. Our new model is a
function of the thermodynamic factor, the self-diffusion
coefficients at infinite dilution, and the self-diffusion
coefficients of the pure substances, which are readily available.
Validation was carried out with experimental data of molecular
systems. Self-diffusion coefficients of mixtures with typical
thermodynamic factors Γ < 2, molar mass ratios M2/M1 < 2,
and without dimerizing species are successfully predicted: The
relative deviation of the predictions is halved from 10 to 5%. In
the future, similar correlations may be derived for systems with
dimerizing species and multicomponent mixtures. Our new

model thus provides the missing link to render Darken-based
models into practical tools to predict mutual diffusion
coefficients.
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Full set of figures with composition-dependent self-
diffusion coefficients of LJ systems and molecular
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Figure 5. Composition-dependent self-diffusion coefficients Di,self, thermodynamic factors Γ, and relative deviations ΔDi,self,rel for the systems (a)
nitrobenzene−hexane and (b) cyclohexane−benzene. Top figures: experimental data of composition-dependent self-diffusion coefficients Di,self
(blue stars); smoothing fit of the experimental self-diffusion coefficients (blue dashed line); predictions of the McCarty−Mason equation (eq 6)
(red circles/line); predictions of the modified McCarty−Mason equation (eq 25) (green stars/line). Bottom figures: Composition dependence of
the thermodynamic factor Γ − 1 (blue stars/line, left axis) and composition dependence of the relative deviation ΔDi,self,rel between the
experimental self-diffusion coefficients and the predictions of the McCarty−Mason equation (eq 6) (red circles/line, right axis) and the modified
McCarty−Mason equation (eq 25) (green stars/line, right axis). The thermodynamic factors are calculated with a Redlich−Kister model.
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■ NOTATION

Latin Symbols
CCij = velocity cross-correlation function between species i
and j (m2/s)
D12 = Fick diffusion coefficient (m2/s)
Đ12 = Maxwell−Stefan (MS) diffusion coefficient (m2/s)
ĐDarken = Maxwell−Stefan diffusion coefficient in ideal
mixtures computed from the Darken equation (m2/s)
ĐCross = nonideal part of the Maxwell−Stefan diffusion
coefficient, containing velocity cross-correlation functions
(m2/s)
Di,self = composition-dependent self-diffusion coefficient of
species i (m2/s)
Di,self,pred = predicted composition-dependent self-diffusion
coefficient of species i (m2/s)
ΔDi,self,rel = relative deviation between actual and predicted
composition-dependent self-diffusion coefficient of species i
Gij = Kirkwood−Buff coefficient between species i and j
(m3)
kij = adjustable parameter for the Lorentz−Berthelot mixing
rules
L = side length of cubic simulation box (m)
mi = mass of a Lennard-Jones particle of species i (m)
Mi = molar mass of species i (kg/mol)
N = total number of molecules
Ni = number of molecules of species i
p = hydrostatic pressure (Pa)
rj,i = position of molecule j of species i (m)
T = temperature (K)
V = volume of the simulation box (m3)
wi = weight fraction of species i
xi = mole fraction of species i

Greek Symbols
γi = activity coefficient of species i
Γ = thermodynamic factor
ϵi = Lennard-Jones energy parameter for species i (ϵ)
η = shear viscosity (Pa·s)
σi = Lennard-Jones size parameter for species i (σ)

Superscripts
xi→1 = mole fraction xi of species i tending toward 1

∞ = infinite dilution
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