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ABSTRACT

Finite-size effects of transport properties computed from molecular dynamics simulations are inves-
tigated for Weeks-Chandler-Andersen systems at reduced densities of 0.05 (dilute gas), 0.45 (dense
gas), and 0.85 (fluid close to the solid-liquid transition). Viscosities, self-diffusivities, Onsager coeffi-
cients, and electrical conductivities are computed for various system sizes ranging from 64 to 8192
WCA particles at each density. At dilute and intermediate densities, finite-size corrections to the
transport properties significantly deviate from the widely used Yeh—Hummer correction, which was

originally developed for the liquid phase.
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1. Introduction

Transport properties of fluids such as bulk and shear vis-
cosities, self- and mutual diffusivities, and electrical and
thermal conductivities, are governed by the transport of
momentum, mass, and energy at the molecular scale [1],
respectively. Accurate prediction of these properties is
critical for a wide range of applications, such as flow
through porous media [2], subsurface gas storage [3], and
biomedical engineering [4].

Molecular Dynamics (MD) simulations are widely
used to predict transport properties of fluids [5-7].
Advances in force field development and algorithmic effi-
ciency have enabled accurate predictions for both simple
and complex fluids [5-7]. A well-known challenge in
such predictions is the finite-size effect, where computed

transported properties depend on the size of the simula-
tion box, often quantified by the inverse of the length of
the simulation box. This artefact arises from long-range
hydrodynamic interactions that propagate across peri-
odic boundaries. This phenomenon was first explained
by Diinweg and Kremer for polymer solutions [8]. Build-
ing on this work, Yeh and Hummer (YH) derived a
correction for the self-diffusivity of a solute in a single-
component liquid, and validated it for SPC/E water and
Lennard-Jones fluids at a reduced density of 0.7 [9]. The
YH correction shows that self-diffusivities obey a linear
scaling with respect to the inverse of the length simula-
tion box. The prefactor of this finite-size term is a func-
tion of temperature and viscosity. Jamali and co-workers
extended the ideas by Yeh and Hummer to mutual
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diffusivities in binary and ternary mixtures, proposing
finite-size corrections for both Maxwell-Stefan (MS) [10]
and Fick diffusivities [11]. The Yeh-Hummer correction
is based on the observation that although self-diffusivities
vary with the length of the simulation box, the liquid
viscosity remains essentially independent of it. A com-
prehensive review of finite-size effects for diffusivities is
provided by Celebi et al. [12].

Hulikal Chakrapani et al. [13] investigated transport
properties of hydrogen-carbon dioxide mixtures between
5 and 50 MPa and 323.15 and 423.15K. These authors
observed that for an equimolar mixture at 50 MPa and
323.15K, the computed viscosity still varies with the
size of the simulation box. This behaviour is not usually
observed in liquids. Previously, using MD simulations of
WCA particles [5, 14], Kim et al. [15] have also shown
that viscosity scales linearly with the inverse box length at
a reduced density of 0.45, where the fluid is still expected
to behave as a liquid. In sharp contrast, at a reduced den-
sity of 0.85, Kim et al. [15] showed that the liquid has a
size-independent viscosity. Heyes et al. [16] conducted
simulations for hard-sphere gases for various packing
fractions and fit their simulation data to an analytical
expression resembling the YH correction. In the limit of
liquid-like densities, the expression of Heyes et al. [16]
converged to the YH form, whereas significant deviations
were observed at lower (gas-like) densities. These stud-
ies collectively indicate that at low densities and inter-
mediate densities where fluids behave like dense gases,
finite-size effects of computed transport properties devi-
ate from the YH correction and must be treated with
caution. Despite the studies by Kim et al. [15] and Heyes
et al. [16], important gaps remain. Kim et al. [15] did
not examine finite-size effects of self-diffusivities in their
WCA systems, and Heyes et al. [16] did not investigate
finite-size effects of viscosity. To the best of our knowl-
edge, no prior studies have explored the finite-size effects
of MS diffusivities in gases or gas mixtures. These gaps
form the motivation for the present work.

In this study, we use MD simulations to investi-
gate the finite-size effects on viscosities, self-diffusivities,
and Onsager coeflicients using WCA particles, ie. a
shifted Lennard-Jones potential with the attractive tail
cut off [14], chosen for its computational efficiency. To
compute Onsager coefficients, we use colour mixtures
of WCA particles, in which particles are grouped solely
for post-processing purposes while all particles inter-
act identically with each other. Onsager coefficients are
reported instead of MS diffusivities, as the former can be
directly combined to obtain multicomponent MS diftu-
sivities. Simulations are performed at three representa-
tive (reduced) densities: (a) a low-density regime (p =
0.05), where the system behaves like a dilute gas; (b)

an intermediate-density regime, mimicking a dense gas
(p = 0.45); and (c) a high-density regime, characteristic
of liquid-like behaviour close to the solid-liquid tran-
sition point (p = 0.85) [15]. To investigate finite-size
effects, we perform simulations with particle numbers
ranging from 64 to 8192 in most cases. In Section 2 we
elaborate on the methods adopted in our study. Section 3
contains a discussion of the finite-size effects of the trans-
port properties for the three chosen densities before
concluding in Section 4.

2. Methods
2.1. MD simulations

Viscosities, self-diffusivities, and Onsager coefficients
were obtained from equilibrium molecular-dynamics
(MD) simulations of Weeks—Chandler-Andersen (WCA)
particles [5, 6, 14]. All particles interact via three-
dimensional periodic boundaries. Throughout, we use
Lennard-Jones reduced units, i.e. o, ¢, m, and kg are set
to unity [5] and all quantities are reported in reduced
units, see Table 1. The Lennard-Jones pair potential
is truncated and shifted at r. = 21/¢ ~ 1.122, so that
both the potential and its first derivative vanish at the
cut-off. Three reduced number densities were stud-
ied, p =0.05 (dilute), 0.45 (intermediate), and 0.85
(dense). For each density, cubic boxes containing N =
64,128,256,512, 1024, 2048, 4096, or 8192 particles were
simulated to quantify finite-size effects. The equations
of motion were integrated with the leap-frog Verlet
algorithm [5, 6, 17] using a reduced time step of At =
1073 and a fixed target temperature of T = 1. Simula-
tions were performed with an in-house code.

Particles were initially placed randomly inside the box,
and velocities were drawn from a Maxwell-Boltzmann
distribution corresponding to T = 1. Each system was
equilibrated for t = 50 in the isokinetic (NV T) ensem-
ble [6], which strictly maintains the desired kinetic tem-
perature. Afterwards, we switched to the microcanonical
(NV E) ensemble, discarded a further ¢t = 50 (5x10°
MD steps) for additional relaxation, and then recorded
pressure and particle trajectories for transport property
calculations. Production runs lasted ¢ = 10° (10° MD
steps). Between 100 and 400 statistically independent
trajectories were run for each system size, each one start-
ing from random particle positions and velocities. The
dilute state (p = 0.05) required the largest replica count
to reach the target precision. Specifically, computing the
Onsager coeflicients at p = 0.05 required 3000 replicates,
far more than were needed at the other two densities. Fol-
lowing Ref. [5], we divide all data for a given reduced den-
sity into five blocks. The reported mean is the average of



Table 1. Reduced (Lennard-Jones) units adopted in this work.
The characteristic Lennard—Jones parameters o, &, and particle
mass m are set to unity. The elementary charge e is also set to
unity. For clarity, starred quantities (-*) retain their physical units,
whereas the unstarred versions are expressed in dimensionless
form. The fundamental dimensions M (mass), L (length), T (time), |
(current) form the basis for expressing the dimensionality of every
physical quantity investigated in this study.

Quantity Dimensional form Reduced definition
Mass M m=m*/m

Box Length L L=1*/o

Time T t=t"/t,t =0 /m/e
Charge IT q=q*/e
Position L r=r/o

Total Energy ML2T2 E=F*"/e
Temperature ML2T—2 T =kgT*/e
Density L3 p=prod =No3/V
Pressure ML=1T-2 P=Pc3/e
Self-diffusivity L2171 peetf = pself /(g /e /m)
Onsager coefficient L2171 A = A*/(o4/e/m)
MS-diffusivity L21-! DMS = pMS* /(g /e /m)
Viscosity ML=TT! n=n*c/Jme
Kinematic Viscosity L2171 v =v*/(c4/e/m)
Electrical conductivity M~TL3T3 R K =x*/(20 2/ /me)

these blocks, and the uncertainty is the standard devia-
tion of the block averages.

All transport coeflicients are computed in the con-
stant energy ensemble (NVE). Switching directly from
the isokinetic ensemble to the NVE ensemble can leave
the system with a total energy that produces a kinetic
temperature slightly different from the target T = 1. To
remove this bias, we carried out three short, independent
NVT — NVE simulations, recorded the total energy as a
function of the kinetic temperature and fitted a straight
line to this. The fit reveals the total energy that would
yield exactly T' = 1. Before each production run, we keep
all particle positions unchanged and scale the velocities
uniformly so that the system starts the production phase
with this target total energy. The method preserves the
equilibrated structure at the end of the isokinetic phase
while ensuring the desired total energy from the first time
step onward in the production run. Using this procedure
the temperatures of all our simulations were within one
percentof T = 1.

2.2. Viscosities

We compute the shear viscosity from the Green-Kubo
(GK) integral of the stress—stress autocorrelation func-
tion, following Maginn et al. [7, 18]:

™D = T 0kp TZZ/ PQS(f)P?}S(O)>dt, (1)
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where the traceless, symmetric part of the microscopic
stress tensor equals [7, 18]

Pj +P
PP =—-> sk R (UZPkk) ()

where Pj; is an element of the stress-tensor [5, 6] and d;;
is the Kronecker delta. The prefactor 10 accounts for the
three diagonal (4/3 each) and six off-diagonal (1 each)
tensor components. To improve statistics, we average
the correlation over many time origins, indicated by the
brackets (- - - ) in Equation (1). The time series is accumu-
lated on-the-fly with the multiple-7 algorithm of Ramirez
et al. [19], which stores far fewer data than the fixed-
interval method of Frenkel and Smit [5]. This reduction is
crucial for the dilute state (p = 0.05), where stress corre-
lations decay slowly. The running integral of Equation (1)
is fitted to two models recommended by Maginn et al. [7],

Ht) =A [arl (1- e—t/n) +A—a)n(1- e—t/rz)],
(3)

f(t) = no [1 — exp [—(t/2)*]], (4)

where the viscosity is obtained from the plateau values
Alat; + (1 — a)7z] and g, respectively. The running
integral is fitted to the two fit functions in the range 0 <
t < 600 for all systems investigated in this study. The vis-
cosities obtained from the two fit functions differed by
less than 1%, in all cases.

2.3. Self-diffusivities

Self-diffusion describes the mass transfer process driven
by Brownian motion and therefore occurs even when no
gradients of chemical potential, temperature, or pressure
are present in the fluid [5]. For each system size, we obtain
the self-diffusion coefficient from the mean-square dis-
placement (MSD) of all particles [5, 6]:

N
DY = tlggo # <Z1: (ri(t) — ri(O))2>) (5)
=
where ¢t is the correlation time, N the number of par-
ticles, and r;(t) the position of particle i at time t. The
factor 6 accounts for the three spatial dimensions. MSDs
are accumulated on-the-fly with the multiple-7 correla-
tor of Ramirez et al. [19]. At short times, the motion
is ballistic (MSD o t2), whereas at long times it is dif-
fusive (MSD « ). To extract D{o, we plot log(MSD)
versus logt and choose the time window whose slope
lies between 0.995 and 1.005 (within 0.5% of unity). We
further ensure that inside this time window, the particle
travels at least two to three box lengths. The selected time
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Table 2. Time windows [tmin, tmax] chosen for the linear (diffu-
sive) region of the mean-square-displacement (MSD) curves. Win-
dows were selected so that the log—log slope of MSD(¢) lies within
40.5% of unity.

Self-diffusivity MS-diffusivity
P tmin tmax tmin fmax
0.05 1500 1750 1000 1250
0.45 1500 1750 100 250
0.85 1500 1750 50 200

windows for every p are summarised in Table 2. We use
the YH correction that compensates for finite-size effects
in MD-computed self-diffusivities [9],

EkpT
6w nL’

Dself Dself

(6)

where & = 2.837297 is the lattice-sum constant for a
cubic box and L is the box length. In the original YH
equation, the viscosity # is assumed size-independent.
Later, we will show that 7 can vary with L, especially at
low densities, and we discuss corrections that account
for this effect. The YH expression has been validated
for many molecules and mixtures over a wide range
of conditions [9, 20, 21]. Busch and Paschek further
reduced finite-size effects by using non-cubic simula-
tion cells [22]. For a comprehensive review of finite-size
corrections to Df\flllf), see Ref. [12].

The YH correction rests on continuum hydrodynam-
ics and therefore works best for dense liquids [9, 12]. At
lower densities this assumption weakens, and the stan-
dard term may over- or under-correct the diffusivity.
To address the issue, Fushiki [23] introduced a density-
dependent factor Ky, later validated for hard spheres by
Pieprzyk et al. [24]. The modified YH relation is [24],

Dself Dse é:k T _ pmyself v :kBT
— ~“MD If >
6 nlL v + D%t 6L
(7)

where v =1#/p is the kinematic viscosity. Piepryzk
et al. [24] showed using MD simulations of hard-spheres
that the factor Ky = v/(v + D*f) approaches unity
in dense fluids and tends toward zero in the dilute
limit, reflecting the gradual breakdown of hydrody-
namic behaviour. For hard-sphere systems, this correc-
tion remains reliable down to a reduced density of about
0.2 [24]. For a reduced density below 0.2, to the best of
our knowledge, there are no models to correct finite-size
effects. Note that the kinematic viscosity is defined using
the shear viscosity in the thermodynamic limit, #. Later,
we will show that using #mp instead of # hardly affects
finite-size corrections to Diﬁllf).

2.4. Onsager coefficients and Maxwell-Stefan (MS)
diffusivity

Self-diffusion measures the random motion of individ-
ual molecules, whereas MS diffusivity characterises the
collective mass transport of different species [25, 26] in
a mixture. In MD simulations, the MS diffusivity of a
binary mixture with N = N4 + Np particles of types A
and B is calculated from its Onsager coeflicients A,p
(a,p € {A,B}) [10, 12, 27, 28]. The Onsager coeffi-
cients for an AB binary mixture are related to the cross-
correlations of particle displacements as [10, 12, 27, 28],

d1 |3
Ass=lim —— <§le [ri(t) — £:(0)]
- [xi() = 1(0)] > (8)
Ni Np
Aap = tlggoa@<;]2; [ri(t) — £i(0)]
- [xi(®) = 1(0)] > ©)
Ny N
App = lim dt ~ <ZUZI) [xi(t) = 1:(0)]
- [xi(®) = 1(0)] > (10)

In our colour-mixture setup, all particles interact through
the same WCA potential, while being merely tagged as
type A or B so that Equations (8)-(10) can be evaluated.
For such a symmetric mixture, the Onsager coefficients
satisfy [10]

Asga =App= A, Aap=-—A. (11)
The MS diffusivity of a general binary mixture is [10, 12]

XB XA
DMS = 2 Agn + == App — 2A 43, (12)
XA XB

with mole fractions x4 = N4 /N and xg = Np/N. For a
colour mixture, Equation (12) reduces to

(13)

Jamali et al. [10] derived a YH-like correction to mitigate
finite-size effects of MS diffusion coefficients using

1 EkgT

T 6r L’

pMS — p\t (14)




Table 3. Simulated colour mixtures (types A and B) used for eval-
uating Onsager coefficients. Each density p was studied at the
indicated mole-fraction ratios and at all system sizes listed in the
footnote.

1 1 1 1 1
P = > A " 5

64 32 8 4 2
0.85 64-8192° 64-8192° 64-81922 64-81922 64-8192°
0.45 64-4096° 64-4096° 64-4096° 64-4096° 64-4096°
0.05 64-1024° 64-1024° 64-10242 64-10242 64-1024°

aSystem sizes: 64, 128, 256, 512, 1024, 2048, 4096, 8192.

where DMS is the finite-size corrected MS diffusivity

and the second term on the right hand side is a cor-
rection term identical to Equation (6) [9] except for I,
which is the thermodynamic factor for diffusion [25, 29].
The thermodynamic factor for diffusion reflects the non-
ideality of the mixture [25, 29]. For the WCA colour
mixture used in our study, I" equals 1 by definition, which
reduces the correction term to a standard YH correc-
tion for the MD computed self-diffusivities. Note that our
colour mixtures are ideal diffusion mixtures and thus the
MS diftusivities follow the Darken equation [10, 30, 31],

DMS — XADf:If + XBD%elf — Dself‘ (15)

where Dself DSelf D*!f. The displacement cross-
correlatlons are accumulated on-the-fly with the mult-
iple-7 algorithm of Ramirez et al. [19]. To locate the
diffusive regime, we plot log(MSD) as a function of log t
and select the time window where the slope lies between
0.995 and 1.005 (£0.5% around unity). The correspond-
ing windows for each reduced density are listed in Table 2.
Details of the simulated state points (densities, composi-
tions, and system sizes) used for the Onsager analysis are
summarised in Table 3. Table 2 shows that at p = 0.05,
the lower bound fy,i, is much larger because infrequent
collisions delay the onset of diffusive behaviour.

2.5. Electrical conductivities

Because the Onsager coeflicients are already available,
we can obtain the electrical conductivity with minimal
extra effort. In this work, we evaluate the conductivity
of an AB molten salt (no solvent) by assigning colour
charges g4 = +1 and gp = —1 and considering a charge
neutral mixture (x4 = 0.5). The particle dynamics are
unaffected by the charges which are only applied dur-
ing post-processing. Following Blazquez et al. [32], the
electrical conductivity is

N4 Np

ZZ%Q] ij|> (16)

i=1 j=1

6kBT

with Aj; the Onsager coefficient and e is the elemen-
tary charge. For the chosen charges (q; = g4 = +1,q; =
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g = —1) Equation (16) simplifies to
2,

6kT

K = (Aaa + Apg —2A4B). (17)

Using the symmetry relations of Equation (11), we obtain

42
N

KT SkpT

(18)

Habibi et al. [33] showed that finite-size corrections
for the electrical conductivity x are known only for dilute
salt solutions, where the standard YH expression applies.
For concentrated systems such corrections are not avail-
able a priori. Below we derive the appropriate form for
our molten salt. We substitute DI\M,HS) from Equation (13)
evaluated at x4 = 0.5 into Equation (14) which yields,

(19)

A from Equation (19) when inserted into Equation (18)
yields,

4¢?
k=P (AMD + (20)

1 EkpT
6kpT

T 24r nL

and, after regrouping terms and substituting I' = 1 for a
colour mixture,

1 &e?p
K =K, + — S 21
MD + S L (21)
4e’p A
where xyp = % is the electrical conductivity
B

obtained from the Onsager coefficient App computed by
MD. Finally, anticipating the non-hydrodynamic nature
of dilute systems the standard YH correction term in
Equation (21) can be modified for dilute systems using
the Fushiki [23]/Piepryzk [24] correction term

Ky ée?p
K =K —+— —_— 5 22
Ry (22)
where Kpy = - For the present colour mixture, by

definition I' = 1. For real molten salts, however, I" # 1
and must be retained in the finite-size correction.

A summary table for the finite-size corrections of the
self-, MS diftusivities and the electrical conductivities are
shown in Table 4.

3. Results and discussion
3.1. Viscosities

The finite-size behaviour of the shear viscosities at the
three reduced densities, p = 0.85, 0.45, and 0.05, are
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Table 4. Summary of finite-size correction equations for self-
diffusivity (D), Maxwell-Stefan diffusivity (D™), and electrical
conductivity (x). Here, D!f, DMS and wp denote uncorrected
MD values; 7 is the shear viscosity, L the box length, p the num-
ber density, Ky the hydrodynamic factor, v the kinematic viscosity,
and & = 2.837297 [9]. Abbreviations: Fushiki-Pieprzyk (FP) and
Yeh-Hummer (YH).

Correction Type (with context)

YH for Dse!f

Equation

peelf — D;;ellf + Sl

(Hydrodynamic finite-size correction [8, 9]) R —
T

FP for Dself

kgT
(Generalization of YH for reduced peelf — D?jg + Ky ks
hydrodynamic effects [23, 24].) 67 nL
YH-like for DMS

1 EkgT
(Extension of YH to Maxwell-Stefan DMS — pMs 4 <k
gl MD T 67l
diffusivity [10].) n
FP for DMS
Ky EkgT
(FP-type modification for DMS, applied here for DMS = pM> + Kh cks
colour mixtures (I' = 1).) I 6yl
YH-like for x
1 éep
(Conductivity correction for colour mixtures, K=KMDp + —
inspired by Jamali et al. [10].) 36 L
FP for x
Ky &e?
(FP-type conductivity correction with reduced K = Kkmp + il f—p
36 wyl

hydrodynamic effects.)

compared in Figure 1. In Figure 1(a) (high density),
two regimes are evident for the viscosities of the system
at p = 0.85. For simulation boxes larger than N = 512
(L7! £0.12) the viscosity is almost constant at #yp ~
2.26. Smaller simulation boxes show a pronounced oscil-
lation, a feature previously reported by Kim et al. [15] and
traced to configurational (virial-virial) contributions to
the stress autocorrelation function. Our computed vis-
cosities differ by less than 2% from those reported by
Kim et al. [15]. The plateau at large N corroborates the
conclusion of Yeh and Hummer [9] that the viscosity
of a liquid is independent of system size. The data in
Figure 1(b) (intermediate density) follow a straight line
(dashed red), again consistent with Kim et al. [15]. Linear
extrapolation to L™! — 0 yields  ~ 0.399, only 5% larger
than the value obtained for the smallest simulation box.
At low density, the viscosity changes non-linearly with
system size (Figure 1(c)). Kim et al. showed that in this
regime, the kinetic part of the stress—stress autocorrela-
tion function dominates, leading to the finite-size scaling
relation

a4l (23)
IMD =T T T 13

where A and B are empirical constants and # is
the viscosity in the thermodynamic limit [15]. Fitting
Equation (23) to the computed viscosities at p = 0.05
(green symbols) produces the green dashed curve in
Figure 1(c), which matches the data almost exactly and

confirms that the viscosity is dominated by the kinetic
contribution. The best-fit parameters are # =~ 0.176,
A = —0.019, and B = —5.9. Note that Kim et al. [15]
applied Equation (23) only to the kinetic contribution of
the stress tensor to the viscosity. Finally, we compared
the viscosity in the thermodynamic-limit obtained using
the fit function in Equation (23) to the viscosity of an
ideal-gas using the expression [34, 35],

5\ 1 /mkgT
a==)=./—= 24

where d is effective molecular diameter taken as o,
kpT = 1, and mass m = 1. Evaluating the above expres-
sion yields 7,9 = 0.176, in excellent agreement with #
obtained from the fit in Equation (23). Note that the
ideal gas viscosity in Equation (24) is independent of the
density p. Overall, our viscosities match published data
to within 2% for p = 0.05 and 0.45, and the observed
finite-size effects follow the mechanisms proposed in the
literature.

3.2. Self-diffusivities

We next focus on finite-size effects of self-diffusivities
shown in Figure 2. At p = 0.85 the MD self-diffusivities
in Figure 2(a) vary linearly with the inverse of the length
of the simulation box (blue dashed line). Extrapolating
this line to L~! — 0 yields D**!f & 0.07. Applying the
YH correction (Equation (6)) to Diflllf) at each system size
flattens the curve. The corrected values cluster around a
constant mean (horizontal dashed line) that matches the
extrapolated limit to within 0.1%. This shows that the YH
correction removes finite-size effects exactly as expected
for a dense liquid.

Adding Fushiki’s hydrodynamic factor Ky to the cor-
rection (Equation (7)) makes virtually no difference, as
in Figure 2(a) the cross markers lie almost exactly atop
the plus symbols. Here, Ky =~ 0.98, further confirming
that the system behaves like a liquid at p = 0.85. For the
D*!f term in the Fushiki correction (Equation (7)), we
use the value of the linear fit extrapolated to L=! — 0.
Figure 2(b) shows the MD computed self-diffusivities at
p = 0.45, together with various finite-size corrections.
The uncorrected data follow a linear trend with the
inverse of the simulation box length (red dashed line).
We first applied the Yeh-Hummer term (Equation (6))
in two ways: (1) using the thermodynamic-limit viscos-
ity #, obtained by extrapolating the line in Figure 1(b)
toL™! — 0,and (2) using the size-dependent viscosities
#MD» obtained by inserting # and L into the same linear
fit (Equation (23)). In both cases, the ‘corrected’ diffu-
sivities still vary linearly with L™!. These findings imply
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Figure 1. Finite-size effects for viscosities of single component
systems. (a) p = 0.85 (dense), (b) p = 0.45 (intermediate), and
(c) p = 0.05 (dilute). The dashed line in (a) represents the aver-
age MD computed viscosities for system sizes N = 512-8192. In
(b) the dashed lineis a linear fit to MD viscosities for N = 64-8192.
Panel (c) shows MD viscosities fitted to Equation (23) (dashed line).

that the single 1/L term in the YH equation, appropriate
for liquids, is not valid at p = 0.45. The system at p =
0.45 behaves more like a dense gas and likely requires
higher-order corrections, similar to the viscosities at p =
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Figure 2. Finite-size effects of self-diffusivity D for single-
component fluids: (a) dense (p = 0.85), (b) intermediate (p =
0.45), and (c) dilute (p = 0.05). Raw MD values (DSl are cor-
rected using the Yeh—-Hummer (YH) relation (Equation (6)) with
either thermodynamic-limit or size-dependent viscosities, as well
as the FP-modified YH form (Equation (7)). Dashed lines denote
linear fits to the MD data, horizontal dashed lines indicate
thermodynamic-limit extrapolations (L' — 0), and dash-dotted
lines mark mean corrected values (in panel (c), averaged over N >

256).
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Figure 3. Finite-size effects of Onsager coefficients for an AB colour mixture at p = 0.85. Figures (a)—(e) display the finite-size effects on
the Onsager coefficients for colour mixtures with mole fractions x4 = 1/64,1/32,1/8,1/4,and 1/2 (with x4 = 1 — x3), respectively. All
dashed lines in figures (a)-(e) are linear fits to the MD computed Onsager coefficients.

0.45. To address this insufficiency in YH, we next apply
Fushiki’s hydrodynamic adjustment factor Ky >~ 0.54
through the modified relation (Equation (7)). For the
D*!f term in the Fushiki correction (Equation (7)), we
use the value of the linear fit extrapolated to L™! —
0. Whether # or nyp is used, the corrected diffusiv-
ities become independent of system-size, in line with
the observations for the hard-sphere systems of Pieprzyk
et al. [24]. Interestingly, substituting # with #yp has only
a minor influence on the final values of Df\ﬁllg for the stan-
dard corrections and the Fushiki-modified corrections.

Unlike the cases at p = 0.45 and 0.85, the self-
diffusivities in Figure 2(c) display two size regimes, cap-
tured by two separate linear fits: one for 32 < N <
256 and another for 256 < N < 32,768. Applying the
Yeh-Hummer term (Equation (6)) yields an unexpected
and non-trivial pattern. For N > 256 the corrected diffu-
sivities collapse onto a size-independent cluster, whereas
for 32 < N < 256 the ‘corrected’ viscosities still vary
with L™!. Thus, the YH equation succeeds only when
N > 256, in contrast to p = 0.45, where it failed even
at N = 8192. Using the size-dependent viscosities #mp



MOLECULAR PHYSICS e 9

0.07 ' '

= 0.06[

- | o Dgf corrected m\\ -
- | © DI} corrected \Q\ -
L DMS(XA=6—14) \\\Q 4
L DMS(XA — %) .
1 1 1 I 1 1 1 1 1 1 1 I 1 1 1 1 1 1 1 I 1 1 1 1 1
0.05=="%.02 0.12 0.20

1/L

Figure 4. Finite-size effects of the MS diffusivity for an AB colour mixture at p = 0.85, evaluated using Equation (12). Results for Dm%

self

at mixture compositions of 1/64 and 1/2 are shown alongside the corresponding Dy values at p = 0.85 (same as Figure 2(a)). The
DMSD obtained from Equation (12) are further compared with predictions from Equation (13), confirming the equivalence of the two
approaches. The YH correction to the MS diffusivity (D{‘(ﬁ) for x4 = 1/64 is calculated using Equation (14). The blue dashed line is the
linear fit to the MD computed MS diffusivities. Extrapolating the linear fit to L~' — 0 gives the thermodynamic-limit MS-diffusivity,
indicated by the (blue) dash-dotted horizontal line. The (black) horizontal dashed line marks the mean of the corrected MS-diffusivity.

(from Equation (23)) instead of the extrapolated thermo-
dynamic value # has almost no effect on the finite-size
corrections to D*!f,

Applying Fushiki’s factor Ky = 0.29 in Equation (7),
with D*!f taken from the linear fit for 256 < N < 32,768,
lowers the corrected Df\f{llf) relative to the standard YH
term (Equation (6)). The adjusted values (green hexagons
in Figure 2(c)) still vary linearly with L~! and approach
the YH plateau only at very large sizes (N 2 32,768),
echoing the trend at p = 0.45 in Figure 2(b). Replac-
ing n with nyp leaves the result essentially unchanged.
As a final consistency check, we compared our dilute-
limit self-diffusivity with the ideal-gas prediction. Kinetic
theory predicts [34, 35]

self 3 1

D /nkBT_S 1 (25)
d " gprd2N m ~ 8ymp’

wherewesetd =0 = 1, m = 1,and kg T = 1. Substitut-
ing p = 0.05 yields Disglf = 4.23, very close to the value
4.21 obtained from the extrapolation in Figure 2(c). This

agreement confirms the correctness of our calculations in
the dilute limit.

Although a similar two-regime behaviour was noted
by Pieprzyk et al. [24], the accompanying non-trivial
finite-size corrections were not explored by these authors.
Even in the hard-sphere study of Pieprzyk et al. [24], the
lowest density examined was p = 0.2, where Ky ~ 0.5.
Here, we probe much more dilute systems with Ky &~
0.29. Evidently, hydrodynamic corrections become non-
trivial at such low densities effective for some box sizes,
ineffective for others. Thus, a more refined treatment is
needed. One possibility is to introduce an additional L3
term, analogous to the L3 contribution in Equation (23)
proposed by Kim et al. [15]. A detailed investigation of
this option is left for future work.

3.3. Onsager coefficients

In the dense regime (Figure 3(a—e)) the Onsager coeffi-
cients Asp for all five mole fractions of component A,
x4, decrease linearly with L™!. The negative values of
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Figure 5. Finite-size effects of Onsager coefficients for an AB colour mixture at p = 0.45. Figures (a)-(e) display the finite-size effects on
the Onsager coefficients for colour mixtures with mole fractions x4 = 1/64,1/32,1/8,1/4,and 1/2 (with x4 = 1 — x3), respectively. All
dashed lines in figures (a)-(e) are linear fits to the MD computed Onsager coefficients.

Aap implies anticorrelated displacements that grow in
magnitude with x4, reaching a maximum at x4 = 1/2.
Combining the Onsager coeflicients using Equation (12)
yields MS diffusivities D)) shown in Figure 4. DY
also varies linearly with L™!. Because the colour mix-
ture is symmetric, the finite-size correction reduces to
the standard YH equation (Equation (14)). Applying this
correction yields DMS ~ 0.068, essentially the same as
the self-diffusivity D This match is expected, as in a
colour mixture the colour label does not alter the dynam-
ics. For each system size, we confirm that Ays = App =
—Aap (Equation (11)). As an extra check, Figure 4 shows

the overlap of Aaa/(xaxg) (unfilled symbols) and D%S)
at the two extreme compositions x4 = 1/64 and x4 =
1/2. At p = 0.85, the Onsager coeflicients and the MS-
diffusivities show finite-size effects that scale linearly with
L~! and the standard YH correction (Equation (14))
mitigates this effect.

We now examine the Onsager coefficients Asp at
p = 0.45 in Figure 5(a-e). For each mole fraction, Asp
scales linearly with L™! (Figure 5(a-e)), becoming more
negative as size of the simulation box increases. The
magnitude increases with x4, as larger subgroups of
particles collectively move larger distances than smaller
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Figure 6. Finite-size effects of the MS diffusivity for an AB colour mixture at p = 0.45, evaluated using Equation (12). Results for DMSD
at mixture compositions of 1/64 and 1/2 are shown alongside the corresponding va?g values at p = 0.45 (same as Figure 2(b)). The
DME’) obtained from Equation (12) are further compared with predictions from Equation (13), confirming the equivalence of the two
approaches. The YH correction to the MS diffusivity (D{\(ﬁ) for x4 = 1/64 is calculated using Equation (14). The red dashed line is the

linear fit to the MD computed MS diffusivities. Extrapolating the linear fit to L~! — 0 gives the thermodynamic-limit MS-diffusivity,
indicated by the (red) dash-dotted horizontal line. The (black) horizontal dashed line marks the mean of the corrected MS-diffusivity.

subgroups. Using these coefficients in Equation (12)
yields the MS diftusivity, which also varies linearly with
L~! (Figure 6). As expected for colour mixtures, the
resulting DY) matches the self-diffusivity of each sys-
tem. The two extreme compositions (x4 = 1/64 and
xp = 1/2) are shown explicitly in Figure 6. Because
DMS and the self-diffusivity have identical magnitudes,
any finite-size correction that is valid for the self-
diffusivity should apply directly to the MD diftusiv-
ity. At this density the standard YH term fails, while
the Fushiki factor in Equation (7) mitigates the finite-
size effects (see also the discussion on finite-size cor-
rections for self-diffusivities at p = 0.45). It remains to
be seen how these corrections perform for binary mix-
tures whose components have different interactions and
dynamics.

The Onsager coeflicients Agp and MS diffusivities
at p = 0.05 are shown in Figure 7(a-e). Because each
Onsager coefficient is a cross-correlation, simulations
beyond N = 1024 become prohibitively expensive, and
the long convergence time (f &~ 1000 vs. t = 50 at p =

0.85 and t = 1000 at p = 0.05, Table 2) further ampli-
fies the computational cost. Similar to p = 0.85and p =
0.45, the Onsager coefficient A 45 varies linearly with L™!
for each mole fraction in Figure 7(a-e). The resulting sys-
tem size dependence of the MS diffusivities, obtained by
combining the Onsager coefficients of Figure 7(a-e), is
shown in Figure 8 for x4 = 1/64 and 1/2. For compar-
ison, the corresponding self-diffusivities of Figure 2(c)
are also included. An interesting trend emerges, the
MS and self-diffusivities agree very well for N > 256,
but deviate sharply for N <256. Although it is known
that D and DMS for a colour mixture should coin-
cide in the thermodynamic limit, our results demonstrate
that this equivalence breaks down at small system sizes
in the dilute regime due to different finite-size effects.
This represents a noteworthy finding that merits further
investigation.

3.4. Electrical conductivities

The finite-size effects on electrical conductivity x are
shown in Figure 9(a-c). At p = 0.85 (Figure 9(a)),
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Figure 7. Finite-size effects of Onsager coefficients for an AB colour mixture at p = 0.05. Figures (a)—(e) show the finite-size dependence
of Onsager coefficients for different mole fractions of component A (x,) in the colour mixture. All dashed lines in panels (a)-(e) are linear

fits to the MD-computed Onsager coefficients.

increases linearly with length of the simulation box for
N = 64-8192, as indicated by the dashed fit line. Apply-
ing the YH correction from Equation (21) produces
corrected values (blue crosses) that are nearly indepen-
dent of system size. The mean corrected conductivity
differs only about 2% from the thermodynamic limit
value obtained by extrapolating the fit to L™! — 0. We
attribute this to the relatively short simulation times. We
expect longer runs will reduce this difference. Overall,
the YH correction effectively mitigates finite-size effects
at p = 0.85.

At p = 0.45 (Figure 9(b)), x again scales linearly
with the length of the simulation box, as shown by the

dashed fit. Applying the standard YH correction from
Equation (21) still leaves a size dependence, indicat-
ing that the YH form is insufficient. Inspired by the
modified YH approach for D*!f by Fushiki [23] and
Pieprzyk [24] (see Equation (7) and Figure 2(b)), we
multiply the YH term by the non-dimensional hydro-
dynamic factor Ky =v/(v + D¥y (with Ky = 0.54 at
p = 0.45). This modified correction removes the finite-
size trend, and the mean corrected conductivity devi-
ates by only about 2% from the thermodynamic-limit
value obtained by extrapolation. Although the agreement
between the modified YH-corrected conductivity and the
thermodynamic-limit value (from linear extrapolation to
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at mixture compositions of 1/64 and 1/2 are shown alongside the corresponding Dy values at p = 0.05. The DMSD obtained from
Equation (12) are further compared with predictions from Equation (13), confirming the equivalence of the two approaches. The two
green dashed lines represent linear fits to the MD self-diffusivities for N < 256 and N > 256, respectively (same as Figure 2(c)). Extrapo-
lating the linear fit to L= — 0 gives the thermodynamic-limit MS-diffusivity, indicated by the (green) dash-dotted horizontal line. The
(black) horizontal dashed line marks the mean of the corrected MS-diffusivity.

L~ — 0) is within about 2%, this improvement under-
scores that hydrodynamic assumptions become ques-
tionable at intermediate densities and must be addressed
in future corrections.

The finite-size effects on electrical conductivity x at
p = 0.05 are shown in Figure 9(c). Here, x increases
nearly linearly with box length, as indicated by the green
dashed-line fit, but the total variation is only about
2% from N = 64 to the value of x at the thermody-
namic limit (L™! — 0). In sharp contrast, the variation
reaches 15% at p = 0.45 (Figure 9(b)) and 20% at p =
0.85 (Figure 9(a)). Surprisingly, applying the standard
YH correction for conductivity (Equation (21)) essen-
tially removes the size dependence: the mean corrected
x matches the thermodynamic-limit value obtained by
extrapolating the linear fit in Figure 9(c) to L™! —
0. This robust performance of the standard YH mir-
rors the behaviour seen for self-diffusivities at p = 0.05,
where the standard YH correction for Ds¢lf (Equation (6))
worked well for N > 192 (Figure 2(c)). Although the
hydrodynamic assumptions underlying these corrections
are most questionable at low densities, their success here

suggests further investigation into finite-size effects is
warranted.

4. Conclusions and outlook

We have quantified finite-size effects on shear viscos-
ity, self-diffusivity, Onsager coeflicients (and derived MS
diffusivities), and electrical conductivity x at reduced
densities p = 0.05, 0.45, and 0.85 via MD simulations
of WCA particles. At p = 0.85, shear viscosity is con-
stant for N > 512 and shows minor oscillations below
N = 512, reflecting dominant contributions from the
configurational stress [15]. At p = 0.45, viscosity scales
linearly with 1/L, as previously reported [15], while at
p = 0.05 we observe, for the first time, an additional 1/L?
term arising from kinetic contributions superimposed on
the 1/L scaling. The standard Yeh-Hummer correction
removes finite-size effects of the self-diffusivity at p =
0.85, but fails at intermediate densities, where adding
the Fushiki-Pieprzyk hydrodynamic factor Ky restores
agreement. At p = 0.05, neither corrections fully miti-
gates the finite-size effects for N < 192, suggesting that an
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Figure 9. Finite-size effects of electrical conductivity x for AB
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additional correction 1/L* may be needed. For N > 192
the finite-size effects at p = 0.05 can be corrected using
the standard YH correction. Onsager coefficients of AB
colour mixtures scale linearly with 1/L, except in the

Table 5. Summary of recommended corrections and mini-
mum system sizes across densities. Here, YH = Yeh—-Hummer,
FP = Fushiki-Pieprzyk, N = number of particles. Accuracy is
quantified by extrapolating the relevant property to the infinite
system-size limit (L= = 0), which serves as the reference. The
relative deviation of the finite-size corrected property from this
reference value is then reported as the accuracy, reflecting the
confidence with which the infinite system-size property can be
predicted. For properties where no correction is available, a linear
(p = 0.45) or cubic extrapolation (p = 0.05) with 1/L is required
to obtain the value of property at the thermodynamic limit. For
p = 0.85, the viscosity is constant for N > 512, but exhibits
oscillatory behaviour for N < 512, where no finite-size corrections
are available.

P Property Correction Min. N Accuracy [%]
0.85 n - 64 Oscillatory (N < 512)
pelf YH 64 03
pMs YH-like 64 0.3
K YH-like 64 1
0.45 n - 64 Extrapolate
poelf FP 64 07
pMs FP-like 64 0.7
K FP-like 64 2.6
0.05 n - 64 Extrapolate
peelf YH 256 0.1
pMs YH-like 64 0.2
K YH-like 64 0.1

most dilute gas-like cases (x4 = 1/64,1/32,1/8 at p =
0.05). MS diffusivities derived from the Onsager coeffi-
cients agree with self-diffusivities for all densities, and
the same finite-size corrections apply to both. For elec-
trical conductivities in molten-salt colour mixtures, the
standard YH correction for x (Equation (21)) success-
fully removes finite-size effects at p = 0.85 and unex-
pectedly at p = 0.05. At p = 0.45, the modified YH
form (with Kpy) suffices. These results reveal a non-
hydrodynamic regime at intermediate densities. Over-
all, our findings highlight the necessity of addressing
finite-size effects in MD studies computing transport
properties of dense-gas or gas-like systems (intermedi-
ate and low densities). While the WCA particle model
offers computational efficiency and allows a systematic
assessment of finite-size effects, it lacks direct chemical
specificity.

To provide practical guidance, Table 5 summarises the
recommended correction schemes, the minimum sys-
tem sizes, and their accuracy in densities. This overview
allows readers to identify when finite-size artefacts can be
reliably corrected, when direct extrapolation is required,
and when performing simulations is essential. Future
work could theoretically investigate the behaviour of
finite-size corrections in non-hydrodynamic regimes,
thereby improving predictions of transport properties of
gas-like mixtures.
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